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Abstract

This PhD thesis presents contributions to the field of deep learning by exploring the theoretical
and practical properties of deep residual neural networks, which have become ubiquitous in
state-of-the-art models, from convolutional ResNets to Transformers. Despite their undeniable
successes, deep residual networks remain theoretically challenging to understand and are memory-
intensive to train. Neural differential equations, the continuous-depth analogs of residual networks,
have gained widespread adoption, offering both easier theoretical interpretation and memory-
efficient training. However, the formal mathematical correspondence between these discrete and
continuous models is still underdeveloped.

In this manuscript, we demonstrate that for a formal correspondence between residual networks
and neural ordinary differential equations to hold, the residual functions must be smooth with
respect to the network depth. Additionally, we present a result on the implicit regularization of
deep residual networks towards neural ordinary differential equations: if the network is initialized
as a discretization of a neural ordinary differential equation, then such a discretization holds
throughout training. We also consider the use of a discrete adjoint method to train residual
neural networks by recovering the activations on the fly through a backward pass of the network,
hence avoiding memory costs in the residual layers. We show that this method theoretically and
empirically succeeds at large depth.

We then apply this analogy to the design and analysis of novel architectures. First, by incorpo-
rating a momentum term, we introduce a drop-in replacement for any residual network that can
be trained with equivalent accuracy but with significantly lower memory requirements. These
models, termed Momentum Residual Networks, can be interpreted in the infinitesimal step size
regime as second-order ordinary differential equations. Second, we demonstrate that Transformers
can be interpreted as interacting particle flow maps in the space of probability measures, where
the particles represent the tokens. We also investigate the impact of attention map normalization
on Transformer behavior, introducing a novel architecture called Sinkformer, in which attention
matrices are made doubly stochastic using the Sinkhorn algorithm.

Finally, we provide further contributions to understanding the behavior of Transformers in
practice. We examine how causal Transformers perform in-context autoregressive learning on
first-order autoregressive processes, decomposing the process into two steps: estimating an inner
parameter and predicting the next token. Our theoretical analysis reveals this decomposition
for Transformers trained to optimality on such tasks. We also show how to differentiably route
tokens to experts in Sparse Mixture of Experts Transformers by introducing new sparse and
differentiable top-k operators. This approach leverages a novel formulation of the top-k operator
as a linear program over the permutahedron—the convex hull of permutations—and introduces a
p-norm regularization term to smooth the operator.

All algorithmic contributions of this thesis are open-sourced and available online.
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Résumé

Cette thèse de doctorat apporte des contributions au domaine de l’apprentissage profond en
étudiant les propriétés théoriques et pratiques des réseaux de neurones résiduels profonds. Des
réseaux ResNets convolutionnels aux Transformers, ces architectures sont omniprésentes dans les
modèles d’apprentissage profond de pointe. Malgré leurs succès indéniables, les réseaux résiduels
profonds demeurent théoriquement difficiles à analyser et coûteux en mémoire à entrainer. Les
désormais populaires équations différentielles neuronales, les analogues en profondeur infinie
des réseaux résiduels offrent à la fois une interprétation théorique plus accessible et un coût
mémoire significitativement moindre durant l’entraînement. Cependant, comprendre le lien entre
les modèles discrets et continus nécessite une fondation mathématique rigoureuse.

Dans ce manuscrit, nous démontrons que, pour qu’une correspondance formelle entre les réseaux
résiduels et les équations différentielles neuronales ordinaires soit valide, les fonctions résiduelles
doivent être lisses par rapport à la profondeur du réseau. De plus, nous présentons un résultat
sur la régularisation implicite des réseaux résiduels profonds vers les équations différentielles
neuronales ordinaires : si le réseau est initialisé comme une discrétisation d’une équation
différentielle neuronale, alors cette discrétisation se maintient tout au long de l’entraînement.
Nous considérons également l’utilisation d’une méthode adjointe discrète pour entraîner les
réseaux de neurones résiduels en recalculant les activations à la volée lors d’une rétropropagation
dans le réseau, évitant ainsi les coûts mémoires dans les couches résiduelles. Nous montrons que
cette méthode réussit théoriquement et empiriquement à grande profondeur.

Ensuite, nous illustrons deux applications de cette analogie en concevant et en étudiant de
nouvelles architectures. Tout d’abord, nous proposons, en ajoutant un simple terme d’inertie,
une alternative pour tout réseau résiduel qui peut être entraînée avec des performances compa-
rables tout en utilisant significativement moins de mémoire. Ces modèles, appelés Momentum
Residual Networks, peuvent être interprétés dans la limite d’un nombre infini de couches comme
des équations différentielles ordinaires du second ordre. Ensuite, en interprétant le mécanisme
d’attention comme un système de particules en interaction, où les particules représentent les mots
(ou tokens). Nous explorons également l’impact de la normalisation des matrices d’attention
sur le comportement des Transformers, en introduisant une nouvelle architecture appelée Sink-
former, dans laquelle les matrices d’attention sont rendues doublement stochastiques à l’aide de
l’algorithme de Sinkhorn.

Enfin, nous apportons des contributions supplémentaires à la compréhension des Transformers.
Nous examinons comment ils effectuent un apprentissage autoregressif à partir d’un contexte
sur des processus autoregressifs du premier ordre, décomposant le processus en deux étapes :
l’estimation d’un paramètre interne et la prédiction du prochain token. Notre analyse théorique
révèle cette décomposition pour les Transformers entraînés de manière optimale sur de telles
tâches. Nous montrons également comment acheminer de manière différentiable les tokens vers
des experts dans les Transformers de type Sparse Mixture of Experts en introduisant de nouveaux
opérateurs top-k parcimonieux et différentiables. Cette approche s’appuie sur une formulation
novatrice de l’opérateur top-k comme un programme linéaire sur le permutahedron — l’enveloppe
convexe des permutations d’un vecteur — et introduit un terme de régularisation en norme p
pour lisser l’opérateur.

Les contributions algorithmiques de cette thèse sont publiquement mis à disposition en ligne.
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Contributions and thesis outline

The thesis is structured in three main parts, preceded by an introduction and concluded by a
final section. Each part of the manuscript is made up of two chapters, each of which represents
an independent contribution and has led to a publication. The chapters are self-contained and
the notations may vary from one chapter to another.

Part I: Mathematical foundations for the connection between Residual Neural
Networks and Neural Ordinary Differential Equations

This part rigorously studies the formal correspondence between residual networks and neural
ordinary differential equations.

[Sander et al., 2022b] Do Residual Neural Networks Discretize Neural Ordinary Differential
Equations? M.S., Pierre Ablin and Gabriel Peyré. Published at NeurIPS 2022.

[Marion et al., 2024] Implicit regularization of deep residual networks towards neural ODEs.
Pierre Marion, Yu-Han Wu, M.S., and Gérard Biau. Published at ICLR 2024.

Part II: Analogy between Residual Neural Networks and Neural Ordinary Differential
Equations to design and study new architectures

This part uses the analogy between residual networks and neural ordinary differential equations
in the wild, that is without strong assumptions on the weights of the networks, to design and
study new architectures.

[Sander et al., 2021] Momentum Residual Neural Networks. M.S., Pierre Ablin, Mathieu Blondel
and Gabriel Peyré. Published at ICML 2021.

[Sander et al., 2022a] Sinkformers: Transformers with Doubly Stochastic Attention. M.S., Pierre
Ablin, Mathieu Blondel and Gabriel Peyré. Published at AISTATS 2022.

Part III: Transformers in Action

This part presents additional contributions to Transformers, namely how Transformers perform
in-context autoregressive learning and how to differentiably route tokens to experts in Sparse
Mixture of Experts Transformers.

[Sander et al., 2024] How do Transformers perform In-Context Autoregressive Learning?. M.S.,
Raja Giryes, Taiji Suzuki, Mathieu Blondel, Gabriel Peyré. Published at ICML 2024.

[Sander et al., 2023] Fast, differentiable and sparse top-k: a convex analysis perspective.
M.S., Joan Puigcerver, Josip Djolonga, Gabriel Peyré, Mathieu Blondel. Published at ICML
2023.
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1
Introduction

This introduction begins by exploring key elements of learning with deep neural networks,
focusing on the motivations and frameworks that have fueled their development. Specifically, we
focus on residual-based architectures, such as convolutional ResNets and Transformers, and
introduce their continuous depth counterpart: neural ODEs. Additionally, we present some
challenges faced by modern Transformer models. The following sections provide an overview of
the manuscript’s contributions, summarizing each chapter’s content. Section 1.2 establishes a
mathematical foundation connecting residual networks with neural ODEs. Section 1.3 uses this
analogy to inspire and evaluate new deep learning models in practical settings. Finally, section
1.4 explores additional insights into Transformers: how they perform next-token prediction in an
autoregressive manner and route tokens with experts in sparse mixture of experts models.
Contents

1.1 Learning with deep neural networks . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.2 Learning framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3 Residual Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.4 Challenges with Deep Residual Neural Networks . . . . . . . . . . . . 15
1.1.5 Addressing Challenges with Neural ODEs . . . . . . . . . . . . . . . . 17
1.1.6 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.7 Transformers in action . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.8 In this manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Mathematical foundations for the connection between Residual Neural Net-
works and Neural Ordinary Differential Equations . . . . . . . . . . . . . . . 25
1.2.1 Do Residual Neural Networks Discretize Neural Ordinary Differential

Equations? [Chapter 2 of the manuscript] . . . . . . . . . . . . . . . . 27
1.2.2 Implicit regularization of deep residual networks towards neural ODEs

[Chapter 3 of the manuscript] . . . . . . . . . . . . . . . . . . . . . . . 28
1.3 Analogy between Residual Neural Networks and Neural Ordinary Differential

Equations to design and study new architectures . . . . . . . . . . . . . . . . 30
1.3.1 Momentum Residual Neural Networks [Chapter 4 of the manuscript] . 30
1.3.2 Sinkformers: Transformers with Doubly Stochastic Attention [Chapter

5 of the manuscript] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4 Transformers in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.1 How do Transformers perform In-Context Autoregressive Learning?
[Chapter 6 of the manuscript] . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.2 Fast, differentiable and sparse top-k: a convex analysis perspective
[Chapter 7 of the manuscript] . . . . . . . . . . . . . . . . . . . . . . . 35
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1.1 Learning with deep neural networks

1.1.1 Motivations

It has taken eighty years for artificial neural networks to evolve from theoretical concepts into
powerful tools that surpass human performance in various complex tasks. While this may seem
like a reasonable amount of time, most of the breakthroughs have actually occurred in the
last decade. The exponential growth in computing resources, the vast availability of data, and
advances in learning algorithms for training deep neural networks are responsible for the deep
learning field’s rapid advancement. This revolution has progressed further with large language and
diffusion models, demonstrating the immense potential of neural networks to generate coherent
and contextually relevant text or high quality images.

The increased capabilities and use of deep learning methods is accompanied by numerous
challenges. One major challenge concerns computational resources, which can be both costly
and energy-intensive, necessitating the design of memory and compute-efficient models. Another
significant issue is the explainability of these models; their complexity often makes them difficult
to interpret, leading to transparency issues. Lastly, these models can extrapolate to unseen
data with varying degrees of relevance, potentially producing incorrect yet plausible outputs.
This calls for a deeper theoretical understanding of the properties of neural networks to design
efficient, transparent and accurate models.

Neural networks can be mathematically understood as compositions of differentiable blocks, called
layers, each transforming their inputs through a series of simple mathematical operations mainly
involving weighted sums (the weights are called parameters) and activation functions. These
blocks collectively define a complex, non-linear function of both the network’s parameters and its
input data. The parameters are tuned on large amounts of data using optimization procedures.
The availability of tremendous computational power and the design of highly parallelizable
models and pipelines have enabled the scaling of both parameter counts and dataset sizes to
unprecedented levels, recently achieving trillions. While this increased complexity may seem
to present obstacles to mathematically understand neural networks and address the associated
challenges, it actually facilitates the development of frameworks that leverage the vast number of
parameters and data to model neural networks in an elegant and useful way.

Importantly, this scaling of parameter counts goes hand in hand with the number of layers
increasing to hundreds, defining a large depth limit paradigm. In this context, deep neural
networks can be interpreted as ordinary differential equations (ODEs), offering more efficient
and transparent models and optimization processes that can be better analyzed.

In the realm of large language models, scaling the dataset size also necessitates the design of
neural networks capable of handling an arbitrarily large number of words (or tokens). Among
the most notable of these are Transformer models, which can be conveniently interpreted as
operators on unordered set of points with varying cardinality, or probability measures, and can
be seen as an interacting particle system, where the particles are the tokens.

In addition to providing a playground for modeling deep learning models, both frameworks also
serve in the wild as an analogy for developing and understanding new models.

Our ambition in this introduction is to detail these frameworks and present our contributions to
them. We will begin with a brief presentation of the (deep) learning framework we are focusing
on.

12



1.1.2 Learning framework

We begin by outlining the fundamental framework for (self-)supervised machine learning.

Dataset. Throughout this manuscript, we explore a learning framework that integrates both
supervised and self-supervised learning methodologies. In supervised learning, one is given labeled
data to perform a specific task with known outcomes, whereas in self-supervised learning data is
unlabeled and the goal is to learn useful representations by solving auxiliary tasks, for instance by
predicting part of the input from other parts. Therefore, we consider a dataset of p pairs

(xi, yi)1≤i≤p ∈ (X × Y)p,

where X and Y are subsets of finite dimensional real vector spaces. It is standard to suppose
that (xi, yi) are realizations of a random variable (X,Y ) on X × Y.

In this manuscript, we will mostly focus on images, shapes (computer vision) and text (natural
language processing (NLP)) for applications of our methods.

Model. We consider a model Fθ parametrized by some parameters θ, also called weights. The
objective is to find θ∗ such that:

• In regression (in which case Fθ : X → Y) Fθ∗(xi) ≃ yi for all 1 ≤ i ≤ p.
• In classification (in which case yi is an integer denoting the class of xi and Fθ : X → R|Y|) we

want to use Fθ to form an estimate pθ : X → R|Y| of the posterior probability distribution
p(Y |X) over the classes, and find θ∗ such that pθ∗(xi)yi is maximal for all 1 ≤ i ≤ p.

Loss. To quantify such approximation, we consider that we have a loss function ℓ which is small
when Fθ(x

i) ≃ yi or when pθ(x
i)yi is maximal. In regression, one can consider the empirical

mean squared error

ℓ(θ) =
1

p

p∑

i=1

∥Fθ(x
i)− yi∥2.

Similarly, the mean squared error can be considered in denoising diffusion models (Hyvärinen and
Dayan, 2005; Song and Ermon, 2019; Song et al., 2020), where the loss quantifies the accuracy of
reconstructing an original image from a noisy version.

In classification, one can consider the cross-entropy loss:

ℓ(θ) = −1

p

p∑

i=1

log[pθ(x
i)]yi with pθ(x

i) =
exp(Fθ(x))∑|Y|

k=1 exp([Fθ(x)]k)
,

This loss is also used to measure how well a model predicts the next token in a sequence given
the preceding tokens in a next-token prediction framework.

Learning. The goal of the learning procedure is therefore to find θ∗ that minimizes ℓ, that
is θ∗ ∈ argmin(ℓ). Without further assumptions than differentiability on the model Fθ, the
common approach is to rely on gradient-based optimization methods to iteratively approach θ∗.
The most common approach is gradient descent or stochastic gradient descent, though more
sophisticated approaches are also commonly used in practice such as Adam (Kingma and Ba,
2014). The iterations for gradient descent are, starting with some initialization θ(0):

θ(t+ 1) = θ(t)− η(t)∇ℓ(θ(t)), (1.1)

13



where η(t) is the step-size or learning rate. In this manuscript, we will also consider the
infinitesimal step-size regime of equation (1.1), known as gradient flow:

dθ(t)

dt
= −∇ℓ(θ(t)). (1.2)

The question of global convergence of these methods as well as the impact of the choice of the
initialization on such convergence is an active area of research. We discuss such properties in
sections 1.2.1, 1.2.2 and 1.4.1.

Deep Neural Networks. Throughout this manuscript, we are going to consider Fθ to be a
deep neural network. Without loss of generality, Fθ can be modeled as, starting from a data
point x0 := x:

xn+1 = Fn(xn, θn), 0 ≤ n ≤ N − 1, (1.3)

where N is the number of layers or depth of the network, θ = (θ0, . . . , θN−1) and the Fn’s are
parametrized functions. One then has Fθ(x) = xN . The xn’s are called activations. Many
designs are possible for Fn, and this manuscript will consider three of them, namely perceptrons,
convolutional and attention layers.

While these parameterized functions form the backbone of modern deep neural networks, addi-
tional components are essential for achieving optimal performance as the depth N increases. The
first, which is not the focus of this manuscript, is the use of normalization layers at each iteration
to ensure effective signal propagation and avoid vanishing/exploding gradients. Normalization
layers enable convergence of neural networks with dozens of layers. However, when one considers
even deeper networks, a second ingredient, which is central to this thesis, is the use of skip
connections, ensuring the principle that the deeper, the better. A deep neural network using skip
connections is called residual neural network.

1.1.3 Residual Neural Networks

It has been empirically observed (Srivastava et al., 2015; He and Sun, 2015) that the error of deep
convolutional networks in image classification tasks first saturates with depth and then rapidly
degrades. This phenomenon is paradoxical because if the Fn in (1.3) are expressive enough to
express the identity mapping, one can easily construct the deeper counterpart of an existing
model by stacking identity layers on top of it. In this way, a deeper model is at least as expressive
as a shallower one. However, as the parameters θ are learned by gradient based methods, such
desirable solutions do not seem to be achieved in practice. The idea of He et al. (2016a) is
to solve this paradox by explicitly letting some of the Fn’s depend on a residual mapping fn:
Fn(x, θn) = x+ fn(x, θn) for some values of n. Note that this is possible if and only if fn(x, θn)
has the same shape as x. With such a formulation, for Fn to be close to the identity, it suffices
for fn to be close to zero, which happens to be easier from an optimization perspective. In
practice, this small change is enough to ensure that stacking more layers improves accuracy,
and the original idea of residual learning in convolutional neural networks (He et al., 2016a,b)
enabled the resulting architecture, called ResNet, to beat all existing deep learning models on
the challenging ImageNet (Deng et al., 2009a) classification task. It is important to note that
a standard ResNet consists of two core components. The first are downsampling layers, which
halve the size of the current activation xn and double the number of filters. There are usually 4
downsampling layers in standard ResNets. In between two of such layers with indices nk and
nk+1 are the residual layers themselves, where each neural network fn in (1.3) is structurally
identical: fn := f and one iterates:

xn+1 = xn + f(xn, θn), nk ≤ n ≤ nk+1 − 1.
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1

Changes 
 dimension

Residual connexions
xn+1 = xn + f(xn, θn)

Residual Neural Networks [He et al., 2016]

Figure 1.1: ResNet 34 architecture as presented in He et al. (2016a). We highlight in blue the
downsampling layers for which the dimension changes, and in red the residual layers.

The presence of these two components is illustrated in Figure 1.1. This remark being made, we
will, in the rest of this introduction solely focus on the residual layers and consider that our deep
network Fθ simply iterates

xn+1 = xn + f(xn, θn), 0 ≤ n ≤ N − 1. (1.4)

Since their introduction in the context of convolutions, residual connections are now ubiquitous
in the deep learning community in various forms.

In this manuscript, we will consider the following choices for f , which we describe in their simplest
form as follows:

• Perceptron layers (Rosenblatt et al., 1962; Amari, 1967): in this case f(x, θ) = V σ(Wx),
where x ∈ Rd, W and V are real matrices and σ : R → R is a non-linearity applied
component-wise. We consider such models in Chapters 3 and 7.

• Convolutional layers (LeCun et al., 1998): in this case f(x, θ) = V ∗ σ(W ∗ x), where
x ∈ Rd1×d2×C , C is the number of channels in x, W and V are convolutional filters,
σ : R→ R is a non-linearity applied component-wise and ∗ is the multi-channel convolution
operator, defined as (W ∗ x)(i, j, k) =∑d1

m=1

∑d2
n=1

∑C
c=1W (m,n, f, k) · x(i+m, j + n, c)

with W ∈ Rd1×d2×C×K . We consider such models in Chapters 2, 3 and 4.

• Attention layers (Bahdanau et al., 2014a; Vaswani et al., 2017): in this case, f(x, θ) =
σ(xWQW

⊤
Kx

⊤)xWV , where x ∈ RT×d is a sequence of T tokens, WQ, WK , and WV are
real matrices and σ is the row-wise SoftMax operator. More details on such layers, which
are at the core of Transformer models, are provided in Section 1.1.6. We consider such
models in Chapters 5, 6 and 7.

Throughout this manuscript, we will use the terminologies “residual neural network”, “residual
network” and “ResNet” to refer to a model of the form (1.4).

1.1.4 Challenges with Deep Residual Neural Networks

We saw how residual connections enable stacking many layers. In practice, depth reaches
thousands in computer vision (He et al., 2016b) and hundreds in NLP (Brown et al., 2020).
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However there are two main issues when considering deep models, namely:

• Theoretical understandings of deep neural networks are difficult.

• Deep neural networks are memory costly to train.

Theoretical hardness. Most of the theoretical analysis regarding the approximation capacities,
statistical properties and optimization behavior of neural networks are dedicated to the one-layer
(shallow) case. While universal approximations results and approximation rates can still be
derived for deep networks (DeVore et al., 2021), generalization bounds for deep neural networks
increase polynomially with depth (Bartlett et al., 2017), and most results on the analysis of
convergence of gradient descents to global minima in the rich regime (that is when all the
parameters significantly evolve during the optimization process) concern the shallow case (Chizat
and Bach, 2020).

Memory cost. The memory cost of training deep architectures arises from the backpropagation
algorithm, which is the preferred method for computing the gradient of the scalar-valued function
ℓ(θ). This algorithm employs the chain rule with a backward traversal of the computational
graph (Bauer, 1974) and is also known as reverse-mode automatic differentiation (Baydin et al.,
2018). The computational cost is comparable to that of evaluating the function itself. To
backpropagate gradients through a neural architecture without additional assumptions, all
intermediate activations must be stored during the forward pass. This approach is implemented
in popular deep learning libraries such as Pytorch (Paszke et al., 2017), Tensorflow (Abadi et al.,
2016), and JAX (Jacobsen et al., 2018). The backpropagation equations, for which the concept
is illustrated in Figure 1.2 are

∇θn−1ℓ = [∂θf(xn−1, θn−1)]
⊤∇xnℓ, ∇xn−1ℓ = [I + ∂xf(xn−1, θn−1)]

⊤∇xnℓ. (1.5)

xn−1 xn xn+1

Forward pass: 

Backward pass: 

θn−1 θn
∇xn−1

ℓ = [I + ∂x f(xn−1, θn−1)]⊤ ∇xn
ℓ .

xn+1 = xn + f(xn, θn)

Figure 1.2: Illustration of the backpropagation algorithm.

The computations in (1.5) necessitate the storage of the activations xn’s. This can cause memory
issues in increasingly deep architectures because the memory requirements to store the xn’s is
simply too big, as illustrated in Figure 1.3.
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Figure 1.3: Memory needed (in blue) to compute gradients as the function of the number of samples
processed at the same time (batch size) for a convolutional ResNet 152 on ImageNet (Deng et al., 2009a).
In contrast, the memory needed to store the parameters of the model is negligible..

1.1.5 Addressing Challenges with Neural ODEs

We now present an infinite-depth limit viewpoint on residual neural networks, called neural
ODEs, in order to tackle these challenges.

The idea behind Neural Ordinary Differential Equations (Weinan, 2017a; Chen et al., 2018) is to
interpret (1.4) as a Euler discretization of the ODE

dX

ds
= f(X(s),Θ(s)) with X(0) = x0. (1.6)

While a residual neural network consists in a succession of discrete transformation of the activation
xn and outputs xN , the Neural ODE corresponds to a smooth transformation mapping an initial
condition X(0) to its deep representation X(1), that is the solution of (1.6) at some fixed time
horizon, that we take equal to 1 without loss of generality. This comparison is illustrated in
Figure 1.4. Note that for the choices of f made in this manuscript, an analytical solution to
the neural ODE (1.6) will never be available and one has to rely on numerical solvers to solve
the neural ODE (Kidger, 2022), for which dedicated software is available (Chen, 2018). It has
been shown that the performance of a given neural ODE depends on the numerical integrator for
solving it (Gusak et al., 2020). See Kidger (2022) for a complete survey on neural ODEs.

Neural ODEs enjoy theoretical and practical advantages compared to finite depth residual neural
networks.

Theoretical advantages. First, the approximation capabilities of neural ODEs are well
understood (Teshima et al., 2020; Zhang et al., 2020a): a neural ODE is a universal approximator
of a large class of diffeomorphisms, that is continuous invertible maps with continuous inverse.
Secondly, while standard generalization bounds of neural networks grow with depth (Bartlett
et al., 2019), it is still possible to derive generalization bounds for neural ODEs (Hanson and
Raginsky, 2022; Marion, 2023). Last, global convergence results of gradient based optimization
methods can be derived for neural ODEs (Barboni et al., 2022, 2024).

Practical advantages: memory-free training. Practically, neural ODEs offer the significant
advantages of a memory-efficient training (Chen et al., 2018). More precisely, the continuous
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xn+1 = xn + f(xn, θn)

Residual Network with N layers

dX
ds

(s) = f(X(s), Θ(s))

Neural ODE

x0
x1 xN

X(0) X(1)

Figure 1.4: Comparison between residual neural networks and Neural ODEs. While the first map
an input to a deep representation through a finite series of transformations, the second define this deep
representation implicitly as the solution of the ODE at time 1.

adjoint state method (Pontryagin, 1987; Chen et al., 2018) gives

∇Θ(s)ℓ = ∂Θ[f(X(s),Θ(s))]⊤∇X(s)ℓds,
d∇X(s)ℓ

ds
= −[∂Xf(X(s),Θ(s))]⊤∇X(s)ℓ. (1.7)

The key advantage of using equation (1.7) is that one can recover X(s) on the fly by solving the
Neural ODE (1.6) backward in time starting from X(1). This strategy avoids storing the forward
trajectory (X(s))s∈[0,1] and leads to a O(1) memory footprint (Chen et al., 2018). However,
numerical discretization errors when solving the ODE backward will lead to a difference between
the forward and backward trajectory, such that the gradients obtained in equation (1.7) will
not be identical to the ones obtained by differentiating through the numerical solver. These
stability issues can lead to failures of the continuous adjoint method (worse accuracy compared
to differentiating through the solver, significantly slower training) (Gholami et al., 2019; Teh
et al., 2019; Kidger, 2022).

Applications. Neural ODEs have several key applications, particularly in dynamic modeling
and time-series prediction. They are widely used in physics-informed modeling, continuous-time
modeling of dynamical systems (Greydanus et al., 2019), and generative modeling (Chen et al.,
2018). Additionally, they are applied in system identification, population dynamics, financial
modeling. However, while the parametrization of f using a continuous depth dependent parameter
Θ(s) may offer parameter efficiency, it greatly decreases the performance of neural ODEs on
standard supervised-learning tasks such as ImageNet classification (Zhuang et al., 2021).

Correspondence between residual networks and neural ODEs. Even though neural
ODEs are presented as the infinite depth counterpart of residual networks, the fact that they are
used in different applications calls for a better understanding of the true correspondence holding
between them. Under which conditions trained residual networks behave like neural ODEs?
Answering this question would offer a more rigorous foundation for the widely held belief that
residual networks and neural ODEs behave similarly in the large-depth limit (see, e.g., Haber and
Ruthotto, 2017a; E et al., 2019; Dong et al., 2020; Massaroli et al., 2020; Kidger, 2022). Secondly,
if trained residual networks can indeed be viewed as discretizations of neural ODEs, then one
can use the extensive theoretical and practical arsenal of ODE theory to residual networks. Last,
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but not least, residual networks would benefit the practical advantage of neural ODEs, that is
their reduced memory training. We further discuss this question in Section 1.2, and in Chapters
2 and 3 of this manuscript.

However, scaling deep learning methods requires understanding not only their behavior in the
large depth limit but also in the large dataset limit. This is particularly crucial when considering
Transformers, which are designed to handle an arbitrarily large number of tokens. We will now
introduce this architecture.

1.1.6 Transformers

Transformers (Vaswani et al., 2017) have emerged as the state-of-the-art architecture in natural
language processing (NLP) tasks (Devlin et al., 2018) and have also demonstrated remarkable
performance in computer vision (Dosovitskiy et al., 2020). These models now serve as the
foundation for large-scale language models, such as GPT (Radford et al., 2018; Brown et al., 2020),
which have significantly advanced the capabilities of artificial intelligence in both understanding
and generating human language.

Typical pipeline. The fundamental operation of Transformers involves processing sequences of
tokens (s1, . . . , sT ) of arbitrary length T . Initially, the tokens are embedded to create a sequence
X = (X1, . . . , XT ), which represents the input data in a real-valued vector space. To incorporate
positional information, a sequence-independent positional encoding is either concatenated with or
added to each token embedding, resulting in a new sequence x = (x1, . . . , xT ). This sequence is
then processed through a series of Transformer blocks, each equipped with residual connections (He
et al., 2016a), which we recall help to preserve the flow of gradients and stabilize training.

Each Transformer block consists of three primary components:

• A multi-head self-attention mechanism layer with residual connection: The update is
performed as x← x+f(x, θ), where f is the multi-head self-attention mechanism described
in equation (1.8).

• A feedforward multi-layer perceptron (MLP) with residual connection: This typically
consists of a 2-layer perceptron with a ReLU non-linearity, updating each token as: xt ←
xt + σ(W2(σ(W1xt))).

• Two layer normalization layers: One layer norm is applied after the multi-head self-
attention and another after the feedforward MLP, updating each token as: xt ← xt−µt

σt
·γ+β,

where µt and σt are the mean and standard deviation of xt across its features, and γ, β are
learnable.

While the feedforward layer and normalization layers operate on each token independently,
the multi-head self-attention mechanism allows the model to mix information across different
tokens, thereby capturing dependencies and contextual relationships within the sequence. This
mechanism involves applying multiple self-attention operations in parallel and is parametrized by
a set of weight matrices (W h

Q,W
h
K ,W

h
V ,W

h
O)1≤h≤H , where H denotes the number of attention

heads (Vaswani et al., 2017; Michel et al., 2019). The output of the multi-head self-attention
mechanism is given by:

f(x, θ) =

(
H∑

h=1

W h
O

T∑

t′=1

Ah
t,t′W

h
V xt′

)

t∈{1,...,T}

, (1.8)
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where Ah, the attention matrix, determines the attention weights between tokens and is typically
defined as:

Ah
t,t′ =

e⟨W
h
Qxt,Wh

Kxt′ ⟩mt,t′

∑T
τ=1 e

⟨Wh
Qxt,Wh

Kxτ ⟩mt,τ

= SoftMax(⟨W h
Qxt,W h

Kx:⟩mt,:).

In this formulation, mt,t′ can act as a masking function, and can either be set to 1 (indicating
that all tokens are attended to equally, as in an encoder model) or 1t≥t′ (imposing a causal
structure where only past and present tokens are attended to, as in a decoder model). This
flexibility in attention mechanisms allows Transformers to be tailored for different tasks, whether
requiring bidirectional context understanding or autoregressive sequence generation.

Following this succession of residual-based attention and feedforward blocks there is a classification
or regression head which typically takes the form of a feedforward neural network and usually
acts on a pooled transformation of the output sequence or on one particular token in the output
sequence. More specifically, in tasks such as text classification, a common approach is to apply
a pooling operation to the output sequence to summarize the information into a single vector.
One common technique is “mean pooling”, where the mean of all tokens’ representations in the
output sequence is taken. Alternatively, max pooling can be used. Another common approach
is to use a specific token’s output, such as the [CLS] (classification) token. This token is often
designed to capture global information about the entire sequence, and its final hidden state
is used as the input to the classification or regression head. This is typically done in Vision
Transformers (Dosovitskiy et al., 2020). It is also the case in next-token prediction, where the
last token iteratively plays the role of classification token, and the model Fθ is used to estimate a
conditional probability p(St+1 = st+1|S1 = s1, · · · , St = st). In this case, the tokens correspond
to indexes in a finite vocabulary of size V and the loss ℓ(θ) takes the form of a cross entropy
loss:

ℓ(θ) = −1

p

p∑

i=1

(
1

Ti

Ti∑

t=1

log pθ(s
i
1, · · · , sit)sit+1

)
with pθ(s

i
1, · · · , sit) =

exp (Fθ(x
i)t)∑V

s=1 exp (Fθ(xi)t)s
.

An illustration of the Transformer’s typical pipeline is provided in Figures 1.5 and 1.6.

Input
Tokens

(s1, . . . , sT )

Embedding
X1, . . . , XT

Positional
Encoding
x1, . . . , xT

Transformer
Layers
(N×)

Output
Tokens

(x1, . . . , xT )

Classification/
Prediction Head

Figure 1.5: Global architecture of the Transformer model of depth N .

Successes and variants. Transformers have revolutionized the deep learning field with
successes in text generation (Team et al., 2023; Jiang et al., 2023; Touvron et al., 2023), computer
vision (Dosovitskiy et al., 2020; Tu et al., 2022), protein structure prediction (Jumper et al.,
2021), audio generation (Borsos et al., 2023), and music generation (Agostinelli et al., 2023).
Transformers also form the backbone of self-supervised learning models, enabling representation
learning across different modalities (see Balestriero et al., 2023 for a detailed survey).

The vast range of Transformer applications has fueled the development of numerous variants
aimed at enhancing Transformer performance, particularly by refining the attention mechanism.
For instance, linear attention (Katharopoulos et al., 2020) replaces the SoftMax function in
(1.8) with the identity function, enabling faster inference (Katharopoulos et al., 2020; Fournier

20



Multi-Head Self-Attention

xt ← xt +
∑H

h=1W
h
O

∑T
t′=1

e
⟨Wh

Qxt,W
h
Kxt′ ⟩mt,t′∑T

τ=1 e
⟨Wh

Q
xt,Wh

K
xτ ⟩

mt,τ

W h
V xt′

Layer Norm
xt ← xt−µt

σt
· γ + β

Feedforward MLP
xt ← xt +W2(σ(W1xt))

Layer Norm
xt ← xt−µt

σt
· γ + β

Figure 1.6: Detailed view of a single Transformer layer with Multi-Head Attention, Feedforward
MLP, and Layer Norms. Formulas for Multi-Head Attention, LayerNorm, and MLP are included.

et al., 2023). Additionally, Kim et al. (2021) replace the dot-product ⟨W h
Qxt,W h

Kxt′⟩ in (1.8)
with an L2 norm cost, ∥W h

Qxt −W h
Kxt′∥2, to create Lipschitz continuous and invertible attention

modules. Furthermore, Wortsman et al. (2023) replace the SoftMax function in (1.8) in vision
Transformers with a ReLU activation, experimentally demonstrating that this adjustment can
match the performance of standard SoftMax-based Transformers.

One contribution of this manuscript is the proposal to replace the row-wise normalization of the
attention matrix due to the SoftMax with a doubly stochastic normalization, using Sinkhorn
algorithm (Sinkhorn, 1964; Cuturi, 2013). This modification is motivated by the empirical
observation that attention matrices tend to approximate doubly stochastic matrices during
training. The resulting architecture, Sinkformer (Sander et al., 2022a), is presented in Section
1.3.2 and Chapter 5. We theoretically analyze this architecture in the regime of an arbitrary
high number of tokens, described in the following paragraph.

Arbitrary number of tokens. One striking aspect of Transformers is that formulation
(1.8), which is the only operation involving interactions between different tokens, is valid for an
arbitrary number of tokens. Typically, T can therefore theoretically be as large as desired, and
in practice, T can reach 2 million in most recent large language models, such as Gemini (Team
et al., 2023).

In addition, in the unmasked case (that is when mt,t′ = 1), it is easily seen that the map f(., θ)
in equation (1.8) is permutation equivariant. More formally, for any permutation σ, defining
xσ := (xσ(1), · · · , xσ(T ))), we have f(xσ, θ) = f(x, θ)σ. An appealing approach to modeling such
equivariant architectures is to consider them as operating on probability measures or point
clouds of varying cardinality (De Bie et al., 2019; Vuckovic et al., 2021; Zweig and Bruna, 2021).
Specifically, a collection of points (xt)1≤t≤T , where xt ∈ Rd, can be interpreted as a discrete
measure on Rd:

µ :=
1

T

T∑

t=1

δxt ∈M(Rd),

whereM(Rd) denotes the set of probability measures on Rd. In this context, a map Γµ acts on
µ by transforming it into another measure:

µ 7→ 1

T

T∑

t=1

δΓµ(xt).
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This perspective is particularly useful for handling unordered sets of points, allowing for the
analysis of their evolution under transformations. Moreover, it facilitates the exploration of the
mean field (or large sample) limit, where T →∞, which is essential for conducting theoretical
analysis. This approach is analogous to analyzing gradient descent in the mean-field limit, offering
insights into the behavior of systems as the number of its parameters becomes large (Chizat and
Bach, 2020).

One main contribution of this manuscript, discussed further in section 1.3.2 and developed
in Chapter 5 is to adapt this framework to Transformers, and also to define the neural ODE
corresponding to stacking self-attention layers. We will see that such a neural ODE takes the
form of a partial differential equation (PDE)

∂sµ+ div(µΓµ) = 0.

Viewing transformers as particles in interaction systems was done in Lu et al. (2019). This formu-
lation of transformers as maps between probability measures as well as the PDE interpretation
was introduced in Sander et al. (2022a) (Chapter 5 of this manuscript). Then, it has been used
to derive clustering results (Geshkovski et al., 2023), smoothness guarantees (Castin et al., 2024)
as well as universality results (Furuya et al., 2024). The formalism of Transformers as maps
between probability measures was also extended to the masked case by Castin et al. (2024) by
considering augmented tokens (xt, t) ∈ Rd+1.

1.1.7 Transformers in action

1.1.7.1 Autoregressive In-Context Learning.

The primary domain where Transformers have seen widespread success recently is in next-token
prediction within large language models. Despite their remarkable achievements in autoregressive
tasks, the underlying reasons for the effectiveness of Transformers in this setting still lack
a complete theoretical understanding. One important question concerns the expressivity of
Transformers for next-token prediction.

Universality of encoder-only Transformers. The universal approximation properties of
encoder-only Transformers are well established. Yun et al. (2019); Nath et al. (2024); Furuya
et al. (2024) demonstrate that Transformers can universally approximate permutation-equivariant
functions. A more constructive approach, though applicable to a narrower class of functions,
is proposed by Wang and E (2024), offering deeper insights into the mechanisms governing
Transformer expressivity.

In-context learning. When it comes to decoder-only models, another popular recent line
of works consists in theoretically understanding the in-context learning ability of Transform-
ers. Indeed, the seminal work by Brown et al. (2020) introduced the in-context learning
phenomenon observed in Transformer language models: these models are capable of solving
few-shot learning tasks using examples provided within the context. Specifically, given a sequence
(x1, φ(x1), x2, φ(x2), · · · , xk), a trained Transformer can infer the next output φ(xk) without
requiring further parameter updates. This unexpected capability has spurred a wave of recent
research. Some studies have explored the ability of SoftMax attention Transformers to perform
in-context learning, without theoretically studying the training dynamics (Garg et al., 2022;
Akyürek et al., 2022; Li et al., 2023). Others have focused on linear attention (where the SoftMax
is replaced by the identity in equation (1.8)) and analyzed the minimizers of the training loss
when φ is sampled from linear forms in Rd, specifically where φ(x) = w⊤x for some w (Mahankali
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et al., 2023; Ahn et al., 2023; Zhang et al., 2023). These works, in particular, examine the
potential of Transformers to implement optimization algorithms during their forward pass at
inference in order to estimate w, as suggested empirically by Von Oswald et al. (2023a). A
contribution of this manuscript (Chapter 6) is to start bridging the gap between the above
formulation and analysis of in-context learning with what we will refer to as autoregressive
in-context learning.

Autoregressive in-context learning. Recent works (Von Oswald et al., 2023b; Sander et al.,
2024; Nichani et al., 2024) have begun to provide insights into the expressivity of Transformers
for general next-token prediction tasks. In Von Oswald et al. (2023b), the authors explore the
hypothesis that, similar to in-context learning, a trained Transformer predicts the next token
by first estimating an internal parameter and then using it to output a prediction for st+1. A
simplified model (Sander et al., 2024), presented in Chapter 6, which generalizes the work of
Von Oswald et al. (2023b), assumes that tokens satisfy the relation st+1 = φW (s1:t), where W is
a context-dependent parameter that varies with each sequence. We explore the hypothesis that
for a model Tθ to perform well in mapping s1:t to st+1, it first estimates W and then predicts
the next token. Intuitively, because W varies with each sequence, the accuracy of predicting W
heavily depends on the attention mechanism’s ability to adapt its computations based on the
context s1:t.

How do Transformers Perform In-Context Autoregressive Learning?
Michael E. Sander(1), Raja Giryes(2), Taiji Suzuki(3), Mathieu Blondel(4), Gabriel Peyré(1)

(1) Ecole Normale Supérieure and CNRS, France. (2) Tel Aviv University, Israel. (3) University of Tokyo and RIKEN AIP, Japan. (4) Google DeepMind.

Abstract

We consider the training of Transformers on a simple next token prediction task
for the autoregressive process st+1 = Wst. We show how a trained Transformer
predicts the next token by first learning W in-context, and then applying a prediction
mapping. We call the resulting procedure in-context autoregressive learning.

Notations. ∥.∥ is the ℓ2 norm. O(d) (resp U(d)) is the orthogonal (resp unitary)
manifold: O(d) := {W ∈ Rd×d|W⊤W = Id} and U(d) := {W ∈ Cd×d|W ⋆W = Id}.

Transformers for next-token prediction

• Given a sequence of tokens (s1, . . . , sT , . . . ), Transformers are trained to match
s1:T := (s1, . . . , sT ) to sT+1 for all T .

s1

s2

.

.
sT−1

sT

T

Transformer

Adapts its computations based on attention coefficients.  

̂s1 ≃ s2

.

.

̂s2 ≃ s3

̂sT−1 ≃ sT

Masked attention matrix ̂sT ≃ sT+1

Goal

We want to show that, assuming the tokens satisfy sT+1 = ϕW (s1:T ), with
W varying with each sequence, the trained Transformer decomposes its prediction
into 2 steps: first, estimating W (in-context mapping) and then applying a simple
prediction mapping.

We focus on the autoregressive process of order 1: st+1 = Wst.
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Figure 1: Two autoregressive processes of order 1 in R3.

Token Encoding

Each sequence begins with an initial token s1 = 1d. The subsequent states are generated
according to st+1 = Wst. W is the context matrix, sampled uniformly from a subset
CO (respectively, CU) of O(d) (respectively, U(d)): W ∼ W := U(C). We consider two
settings in which the sequence s1:T is first mapped to a new sequence e1:T .
• Augmented Setting : the tokens are defined as et := (0, st, st−1), aligning with the

setup used by Von Oswald et al. (2023).
• Non-Augmented Setting : the tokens are simply et := st.
Commutativity assumption. The matrices W commute. Hence, they are co-
diagonalizable in a unitary basis of Cd×d. Up to a change of basis, we suppose
CU = {diag(λ1, · · · , λd), |λi| = 1}, CO = {(λ1, λ̄1, · · · , λδ, λ̄δ), |λi| = 1}, with d = 2δ.

Causal Linear Multi-Head Attention

We consider a model Tθ involving Causal Linear Multi-Head Attention:

e1:T 7→ (
H∑

h=1

t∑

t′=1
Ah
t,t′B

het′)t∈{1,··· ,T}. (1)

Ah is the attention matrix:
Ah
t,t′ = Pt,t′⟨Ahet|et′⟩.

with P ∈ RTmax×Tmax is an optionally trainable positional encoding. The trainable pa-
rameters are θ = ((Ah, Bh)1≤h≤H, P )

• We focus on the population loss, defined as:

ℓ(θ) :=
Tmax∑

T=2
EW∼W∥Tθ(e1:T ) − sT+1∥2, (2)

indicating the model’s objective to predict sT+1 given e1:T .

In-Context Autoregressive Learning

Contributions:
• Theoretically characterize θ∗ that minimize ℓ.
• Discuss the convergence of gradient descent to these minima.
• Characterize the in-context autoregressive learning process of the model.

In-Context Autoregressive Learning

We say that Tθ∗ learns autoregressively in-context the AR process st+1 = Wst if
Tθ∗(e1:T ) can be decomposed in two steps:
• First applying an in-context mapping γ = Γθ∗(e1:T )
• Then using a prediction mapping Tθ∗(e1:T ) = ψγ(e1:T ). This prediction mapping

should be of the form ψγ(e1:T ) = γsτ for some shift τ ∈ {1, · · · , T}.
With such a factorization, in-context learning arises when the training loss ℓ(θ∗) is
small. This corresponds to having Γθ∗(e1:T ) ≈ W T+1−τ when applied to data e1:T
exactly generated by the AR process with matrix W .

In-Context Mapping with Gradient Descent

• Augmented tokens et := (0, st, st−1) and W = U(CU).
• Model Tθ(e1:T ) =

(
eT +

∑T
t=1⟨AeT |et⟩CBet

)
1:d
.

• Parametrization: we take A and B as

A =




0 0 0
0 a1I a2I

0 a3I a4I


 and B =




0 b1I b2I

0 0 0
0 0 0


 .

Proposition (In-context autoregressive learning with gradient-descent)

Loss (2) is minimal for θ∗ such that a∗
1 + a∗

4 = a∗
2 = b∗

2 = 0 and a∗
3b

∗
1 =∑Tmax

T=2 T∑Tmax
T=2 (T 2+(d−1)T ). Furthermore, an optimal in-context mapping Γθ∗ is one step of

gradient descent on the loss L(W, e1:T ) = 1
2
∑T−1

t=1 ∥st+1 −Wst∥2 starting from the
initialization W = 0, with a step size asymptotically equivalent to 3

2Tmax
with respect

to Tmax.

In-Context Mapping as a Geometric Relation

• Non-augmented tokens et := st.
• Model Tθ(e1:T ) =

∑H
h=1
∑T

t=1PT−1,t⟨et|AheT−1⟩CBhet.
• Parametrization: we take Ah = diag(ah) and Bh = diag(bh).
Then there exists A and B ∈ RH×d such that one has for e1:T = (1d, λ, · · · , λT−1) :

Tθ(e1:T ) =
T∑

t=1
PT−1,t[B⊤A]λt−T+1 ⊙ λt−1.

Proposition (Unitary optimal in-context mapping)

• Any θ∗ = (A∗, B∗, P ∗) achieving zero of the loss (2) satisfies P ∗
T−1,t = 0 if t ̸= T ,

P ∗
T−1,T (B∗⊤A∗)ii = 1, and (B∗⊤A∗)ij = 0 for i ̸= j. Therefore, one must have
H ≥ d. An optimal in-context mapping satisfies Γθ∗(e1:T ) = ēT−1 ⊙ eT and the
predictive mapping ψγ(e1:T ) = γ ⊙ eT .

• Loss (2) reads ℓ(A, B, P ) =
∑Tmax

T=2 l(B⊤A, PT−1) with
l(C, p) = ∥p∥2

2∥C∥2
F + pT−1

2S(C⊤C) − 2Tr(C)pT + d, where S is the sum of all
coefficients operator.

• The equality (B⊤A)ij = 0 for i ̸= j corresponds to an orthogonality property between
heads. When there are more than d heads, some can be pruned.

• Even for Tmax = 2 convergence of gradient descent in (A, B, P ) on ℓ to a global
minimum is an open problem (matrix factorization).

Proposition (Orthogonal optimal in-context mapping)

Any θ∗ = (A∗, B∗, P ∗) with ℓ(θ∗) = 0 in (2) satisfies, denoting C∗ = B∗⊤A∗ and
p∗ = P ∗

T−1: p∗
t = 0 if t < T −1, p∗

TC∗
i,i = 1, p∗

TC∗
2i−1,2i+(C∗

2i−1,2i−1 +C∗
2i−1,2i)p∗

T−1 =
0, p∗

TC∗
2i,2i−1 + (C∗

2i,2i + C∗
2i,2i−1)p∗

T−1 = 0, C∗
2i−1,j = C∗

2i,j = 0 for j ̸= 2i − 1, 2i.
An optimal in-context mapping is then, for et = λt−1: Γθ∗(e1:T ) = λ2, and the
corresponding predictive mapping ψΓθ∗(e1:T )(e1:T ) = λ2 ⊙ eT−1 = λT .

Interpretation: The relation implemented by Γθ∗ is an extension of a known formula
in trigonometry: 2 cos ρRρ − I2 = R2ρ, with Rρ the rotation of parameter ρ in R2.

Rρx
x

R2ρx
2 cos(ρ)Rρx − x

Figure 2: Trigonometric formula implemented by the Trans-
former in-context. The minima of the training loss correspond to
implementing, up to multiplying factors: 2 cos ρRρ − I2 = R2ρ.

Figure 3: Matrices A, B, B⊤A and P after training on loss (2) with random initialization.
Left: Unitary context case with H = 10. Right: Orthogonal context case, with H = 8 < d, which leads
to low rank B⊤A.

Change in the Context Distribution

• Goal: Impact of the context distribution on the optimizaztion landscape. We break
the symmetry of the context distribution.

• Non-augmented tokens and d = 1: st+1 = λst for |λ| = 1. For µ ≥ 1 and
ρ ∼ U(0, 2π), we define λ = eiρ/µ.

• Parametrization: positional encoding-only attention, we take B⊤A = 1.

Proposition (Conditioning)

The Hessian H ∈ RT×T of l(p) := Eλ∼W(µ)|
∑T

t=1 ptλ
2t−T − λT |2 is

Ht,t′ = µ

4π(t′ − t) sin(4(t′ − t)π
µ

).

With eigenvalues σ1(µ) ≥ · · · ≥ σT (µ), σ1(µ) → T and σt>1(µ) → 0 as µ → +∞.

Figure 4: Left: Positional encodings after training for µ ∈ {50, 100, 200, 300}. First raw: P . Second
raw: plot of its last raw. Right: Comparison with cosine absolute PE used in machine translation.

Experiments

Validation of the token encoding choice.
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Shuffled Figure 5: Setup: Create a dataset D with ’Moby Dick’ from nltk

package using tokenizer and word embedding of pre-trained GPT-2
model. Also form Dshuffle by permuting the tokens. Plot: his-
tograms of the mean squared errors (MSE) when fitting an AR pro-
cess to sequences in D (original, in blue) or Dshuffle (shuffled, in
orange). We only display MSEs bigger than a threshold of 10−12.

Augmented setting: In-Context Mapping with Gradient Descent
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Figure 6: Setup: We investigate whether the results of In-
Context Mapping with Gradient Descent still hold without
assumptions the commutativity and parametrization assumptions.
Plot: evolution of the MSE with depth L. We compare with L

steps of gradient descent on the inner loss. At initialization, the
MSE is between 1 and 2.

Non-Augmented setting: In-Context Mapping as a Geometric Relation
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Train Figure 7: Setup: We investigate whether the results of In-

Context Mapping as a Geometric Relation still hold without
assumptions the commutativity and parametrization assumptions.
Plot: evolution of the MSE with the number of heads. At initial-
ization, the MSE is between 0.35 and 1.

Figure 1.7: Illustration of the autoregressive setting. Given any subsequence s1:t, the model is trained
to output a prediction of the next token st+1.

1.1.7.2 Sparse Mixture of Experts with Top-k Gating.

As the number of parameters in Transformer models increases, their performance tends to improve,
but so does the associated computational cost. This trade-off is common in deep learning; however,
the structure of Transformers offers opportunities to mitigate these costs. Notably, a significant
portion of a Transformer’s parameters—up to 90% in some models like PaLM (Chowdhery
et al., 2023)—reside in the feedforward networks. Importantly, these feedforward layers are
applied independently to each token, making it possible to consider different feedforward networks
for different tokens. The idea behind sparse mixture of experts (MoEs) (Shazeer et al., 2017;
Riquelme et al., 2021) is to replace some or each feedforward layer with a set of smaller specialized
layers, called experts. Typically, only a subset of these feedforward networks is activated for each
token, based on a gating mechanism’s selection. This approach allows the model to maintain
or even enhance its performance while significantly reducing the number of active parameters
during training and inference. Sparse MoEs are successfully used in computer vision (Dehghani
et al., 2023) and language modeling (Jiang et al., 2024). For a detailed review on sparse mixture
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of experts in the context of computer vision, see Liu et al. (2024).

As explained in Liu et al. (2024), the most common formulation consists of gating each token
to k experts through a parametrized function Gate(x) := top-k (SoftMax (Wx)). The operator
top-k is defined as top-k(y), which keeps all the k largest coordinates of y intact and sets to 0 all
the others. A MoE layer with E experts (MLPr)1≤r≤E is then defined as

MoE(x) :=
E∑

r=1

Gate(x)r ·MLPr(x),

and can be used in place of any standard MLP layer in large scale Transformers. This process is
further illustrated in Figure 1.8.

Input Token x Gating
Mechanism

MLP1

MLP2

MLP3

MLP4

MLP5

Output Token
Gate(x)3 ·MLP3(x)
+Gate(x)4 ·MLP4(x)

Expert Layers

Sparse Selection
(Only selected experts are active)

Figure 1.8: Illustration of Sparse Mixture of Experts in Transformers. The input token is
processed by a subset of expert layers, selected through a gating mechanism, to generate the
output token.

An important drawback of this gating procedure is that the top-k operator is a discontinuous
piecewise affine function with derivatives that are either undefined or constant. Since deep
learning models are typically trained end-to-end with gradient backpropagation, an interesting
problem is to propose a differentiable relaxation of the top-k operator, extending recent advances
in proposing differentiable relaxations of standard operators and algorithms (Cuturi et al., 2019;
Blondel et al., 2020b; Berthet et al., 2020; Grover et al., 2019; Prillo and Eisenschlos, 2020;
Blondel and Roulet, 2024). Existing approaches already consider differentiable top-k operators
(Amos et al., 2019; Qian et al., 2022; Petersen et al., 2021, 2022). However, in the context of
sparse MoEs, it is crucial that only k experts process a given token x. On the negative side, the
aforementioned operators are dense, in contrast to the original top-k, which is sparse. In this
manuscript (Chapter 7), we present a sparse and differentiable everywhere relaxation for the
top-k operator and validate its benefits experimentally at scale.
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1.1.8 In this manuscript

Now that we have introduced the main tools and challenges we are interested in this manuscript,
we will present a detailed overview of our contributions in sections 1.2, 1.3 and 1.4. Each
standalone contribution is then presented in the rest of the manuscript. We also emphasize that
to every chapter of this manuscript corresponds an open-source python code to reproduce the
experimental findings or use our proposed models. We provide the corresponding repositories at
the end of each chapter overview.

1.2 Mathematical foundations for the connection between Resid-
ual Neural Networks and Neural Ordinary Differential Equa-
tions [Part I of the manuscript]

We saw how residual neural networks (He et al., 2016a,b) keep on outperforming state of the
art in computer vision (Wightman et al., 2021; Bello et al., 2021), and more generally skip
connections are widely used in a various range of applications (Vaswani et al., 2017; Dosovitskiy
et al., 2020). This part of the manuscript is dedicated to formally study the connection between
residual networks and neural ODEs. Therefore, we consider a simple modification of the residual
network forward rule (1.4) by letting explicitly the residual mapping depend on the depth N of
the network:

xn+1 = xn +
1

N
f(xn, θ

N
n ). (1.9)

Note that this correspond to a particular instance of Stable Resnets introduced in Hayou et al.
(2021). On the other hand, we consider the Neural ODE (1.6):

dX

ds
= f(X(s),Θ(s)) with X(0) = x0.

which outputs a final value x(1) ∈ Rd, the solution of equation (1.6).

Now consider the Euler scheme for solving equation (1.6) with time step 1
N starting from x0

and iterating xn+1 = xn + 1
N f(xn,Θ( n

N )). Under mild assumptions on f and Θ, this scheme
is known to converge to the true solution of equation (1.6) as N goes to +∞. If in addition
Θ( n

N ) = θNn , then the ResNet equation (1.9) corresponds to a Euler discretization with time step
1
N of equation (1.6). In fact, we have the following result.

Proposition 1.1. Suppose there exists a smooth function Θ : [0, 1]→ Rk such that θNn = Θ( n
N )

for all N and f is Lipschitz continuous on compact sets. Then the Neural ODE (1.6) has a
unique solution and ∥X( n

N )− xn∥ = O( 1
N ). In particular, xN → X(1) as the number of layers

N →∞.

However, for a given ResNet with fixed depth and weights, the activations in equation (1.9) can
be far from the solution of equation (1.6). This is illustrated in Figure 1.9 where we show that
a deep ResNet can easily break the topology of the input space, which is impossible for a first
order ODE.

These different behaviors require a mathematical framework to precisely characterize the condi-
tions under which deep residual networks behave like neural ODEs, which we propose in Chapters
2 and 3. The potential ODE structure for the trained network is significant for several reasons.
First, it clarifies the connection between trained residual networks and neural ODEs, reinforcing
the common statement that both coincide in the large-depth limit (see, e.g., Haber and Ruthotto,
2017a; E et al., 2019; Dong et al., 2020; Massaroli et al., 2020; Kidger, 2022). Secondly, if trained
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Figure 1.9: Trajectory of ResNets with 300 layers. Left: we learn x→ x
2 , trajectories are smooth

and do not intersect. Right: we learn x→ −x
2 , trajectories are not smooth and intersect.

residual networks are discretizations of neural ODEs, results from neural ODEs can be applied to
understand residual networks better, offering theoretical insights into approximation capabilities
(Teshima et al., 2020; Zhang et al., 2020a) and practical benefits like memory-efficient training
(Chen et al., 2018; Sander et al., 2022b) and weight compression (Queiruga et al., 2021). Finally,
it provides a step towards understanding the implicit regularization (Neyshabur et al., 2014;
Vardi, 2023) of gradient descent in deep residual networks.

Recent studies have examined the connection between residual networks and neural ODEs.
In Cohen et al. (2021), experiments are conducted to better understand how the weights in
ResNets scale with network depth. The authors show that under the assumption of a scaling
limit Θ(s) = Nβ lim θN⌊Ns⌋ for the weights (where 0 < β < 1) and a network scaling factor of
1

Nα (with 0 < α < 1 and α + β = 1), the hidden state of the network converges to a solution
of a linear ODE. In Chapters 2 and 3, we focus on the case where α = 1, as it corresponds
to the scaling in Euler’s method with step size 1

N . The recent study by Cont et al. (2022)
investigates the linear convergence of gradient descent in residual networks, proving the existence
of a 1

2 -Hölder continuous scaling limit as N →∞, with a scaling factor for the residuals of 1√
N

,
which contrasts with our 1

N scaling. In contrast, we show that our limit function is Lipschitz
continuous, indicating stronger regularity. This finding aligns with the work of Marion et al.
(2022), which shows that while 1√

N
scaling is suitable for standard i.i.d. initializations, 1

N is
the correct scaling for smooth initialization to achieve non-trivial behavior (other choices lead
to explosion or identity (Marion et al., 2022)). More broadly, recent studies have shown the
convergence of gradient descent in residual networks when the initial loss is sufficiently small.
This includes residual networks with finite width but arbitrary depth (Du et al., 2019; Liu et al.,
2020) and networks with both infinite width and depth (Lu et al., 2020; Barboni et al., 2021).
These proofs rely on an implicit bias towards weights with small amplitudes, but the question
of the convergence of individual weights as depth increases remains open, and we address it in
this work. This requires demonstrating an additional bias towards weights with small variations
across depth.
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1.2.1 Do Residual Neural Networks Discretize Neural Ordinary Differential Equa-
tions? [Chapter 2 of the manuscript]

We begin to investigate the connection between residual networks and Neural ODEs in Chapter 2.
Our main contributions are to quantify how closely the discrete dynamics of a residual network
approximate the continuous dynamics of a Neural ODE and to propose a discrete approximate
adjoint method to train a residual network without the memory consumption needed to store
the activations.

Approximation error: closeness to an ODE. We propose a framework to define an
associated Neural ODE to a given residual network and control the error between discrete and
continuous trajectories: we establish a bound on this distance, summarized in the following
proposition.

Proposition 1.2 (Approximation error). Let φΘ : Rd×R→ Rd such that φΘ(x, s) = f(x,Θ(s)).
Suppose that ∀n ∈ {0, ..., N − 1}, φΘ(.,

n
N ) = f(., θNn ), that φΘ is C1, and L-Lipschitz with

respect to x, uniformly in s. Note that this implies that the solution of equation (1.6) is well
defined, unique, C2, and that the trajectory is included in some compact K ⊂ Rd. Denote
CN := ∥∂sφΘ + ∂xφΘ[φΘ]∥K×[0,1]

∞ . Then one has for all n: ∥xn − x( n
N )∥ ≤ eL−1

2NL CN .

Using this result, we find on the negative side that if the residual functions are not smooth with
depth, this bound does not diminish as the depth N increases.

On the positive side, we show that gradient descent preserves the smoothness of residual functions
for a residual network with linear residuals and sufficiently small initial loss, leading to an
implicit regularization towards a limit Neural ODE at a rate of 1

N , uniformly with respect to
both depth and optimization time. More precisely, given a training set (xi, yi)i∈[p] in Rd, we
solve the regression problem of mapping xi to yi with a linear ResNet, i.e. f(x, θ) = θx, of depth
N and parameters (θN1 , . . . , θ

N
N ). It corresponds to a deep matrix factorization problem (Zou

et al., 2020a; Bartlett et al., 2018; Arora et al., 2019, 2018). As opposed to these previous works,
we study the infinite depth limit of these linear ResNets with a focus on the learned weights with
gradient flow (1.2). Our result takes the following informal form.

Proposition 1.3 (Smoothness in depth of the weights). Suppose that the initial loss is sufficiently
small and that ∥θNn (0)∥ ≤ 1

4 . Suppose that there exists C0 > 0 independent of n and N such
that ∥θNn+1(0) − θNn (0)∥ ≤ C0

N . Then, ∀t ∈ R+, ∥θNn (t)∥ < 1
2 , and θNn (t) admits a limit ψN

n as
t→ +∞. Moreover, there exists C > 0 such that ∀t ∈ R+, ∥θNn+1(t)− θNn (t)∥ ≤ C

N .

We show that a consequence of this result is an implicit regularization of the linear residual
network towards a linear neural ODE at speed 1

N .

Memory-free discrete adjoint method. Additionally, we explore the use of a memory-free
discrete adjoint method to train ResNets by recovering activations on-the-fly during the backward
pass, hence avoiding the need for storing activations during the forward pass (Wang et al., 2018;
Peng et al., 2017; Zhu et al., 2017; Gomez et al., 2017). These memory savings come at the price
of an about 1.5 times slower training: we are trading memory for computations. Our method
corresponds to define x̃N = xN and iterate for n ∈ {N − 1, . . . 0}:

x̃n = x̃n+1 −
1

N
f(x̃n+1, θ

N
n ).

We propose to modify the backpropagation equations (1.5) by using the approximated activations
(x̃n)n∈[N ] as a proxy for the true activations (xn)n∈[N ] to compute gradients without storing the
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activations:

∇̃θNn−1
ℓ =

1

N
[∂θf(x̃n−1, θ

N
n−1)]

⊤∇x̃nℓ, ∇x̃n−1ℓ = [I +
1

N
∂xf(x̃n−1, θ

N
n−1)]

⊤∇x̃nℓ.

Contrarily to other models such as RevNets (Gomez et al., 2017) (architecture change) or
Momentum ResNets presented in Chapter 4 (forward rule modification) which rely on an exactly
invertible forward rule, the proposed method requires no change at all in the network, but gives
approximate gradients. We show that this method is theoretically sound at large depths if the
residual functions are Lipschitz continuous with respect to the input. Furthermore, we demonstrate
that Heun’s method, a second-order ODE integration scheme, provides better gradient estimates
with the adjoint method when the residual functions are smooth with depth.

Our experimental validation supports these findings: the adjoint method is successful at large
depths, and Heun’s method reduces the number of layers required for effective training. We
also apply the adjoint method for fine-tuning very deep ResNets without additional memory
consumption in the residual layers.

Software. Our code is available at https://github.com/michaelsdr/resnet_nodes.

1.2.2 Implicit regularization of deep residual networks towards neural ODEs
[Chapter 3 of the manuscript]

In Chapter 3, we significantly extend the result of Proposition 1.2.1 regarding the ODE structure
of trained residual networks by considering non-linear models. Specifically, we examine the
formulation

xn+1 = xn +
1

N
√
m
V N
n+1σ

( 1√
q
WN

n+1xn

)
, n ∈ {0, . . . , N − 1}, (1.10)

where N is the network depth, V N
n ∈ Rd×m, WN

n ∈ Rm×d are layer weights, and σ is an
element-wise activation function. The scaling factors are made explicit to maintain weights of
magnitude O(1) regardless of width and depth. As in the previous section, the 1/N scaling
factor is essential for the correspondence with neural ODEs. As in Proposition 1.2, if Lipschitz
continuous functions V and W exist such that V N

n = V(n/N) and WN
n =W(n/N), the residual

network (1.10) converges, as N →∞, to the ODE:

dX

ds
(s) =

1√
m
V(s)σ

( 1√
q
W(s)X(s)

)
, s ∈ [0, 1], (1.11)

This correspondence holds for fixed limiting functions V and W at initialization. However,
similarly to the linear case presented in 1.2.1, the structure of the network during and after
training, when weights are updated with gradient descent, is more complex and requires further
analysis.

We assume that the network is trained with rescaled version of the gradient flow (1.2), where the
parameters Vn are updated according to the ODE dVn

dt (t) = −N ∂ℓ
∂Vn

(t) for t ≥ 0, and similarly
for Wn. The scaling factor N prevents vanishing gradients as N increases, and the gradient flow
is defined with respect to a time index t distinct from the layer index s.

Main contributions. Our first main contribution is to show in Theorem 3.4 that a neural
ODE limit holds after training up to time t, i.e., there exists a function V(s, t) such that the
residual network converges, as N tends to infinity, to the ODE:
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dX

ds
(s) =

1√
m
V(s, t)σ

( 1√
q
W(s, t)X(s)

)
, s ∈ [0, 1].

This large-depth limit holds for any finite training time t ≥ 0. However, convergence of the
optimization algorithm as t tends to infinity, referred to as the long-time limit, is not guaranteed
without further assumptions due to the non-convexity of the optimization problem. We address
this by proving a Polyak-Łojasiewicz (PL) condition, which ensures long-time convergence of the
gradient flow. This condition implies that the gradients of the residual network’s loss cannot be
small when the loss itself is large, and can be seen as a relaxation of convexity (see Definition
3.5). We prove this condition for sufficiently wide networks of the form (1.10) in Proposition 3.6.
Finally, we show in Theorem 3.7 with high probability that as both N and t tend to infinity, the
trained residual network (1.10) converges to the solution of the neural ODE (1.11), with limiting
functions V∞ and W∞.

Generalizations to other architecture. As shown in Theorem 3.15 and Proposition 3.16,
most of our results actually hold for a more general residual network of the form

xn+1 = xn +
1

N
f(xn, θ

N
n ), (1.12)

where f : Rd × Rp → Rd is a C2 function such that f(0, ·) ≡ 0 and f(·, θ) is uniformly Lipschitz
for θ in any compact. However, for this generalized model, we need to assume the existence of a
PL condition to prove the convergence in the long-time and large-depth limits.

Our network of interest (1.10) is a special case of model (1.12), and other choices include
convolutional layers or a Lipschitz continuous version of Transformer (Kim et al., 2021), that
is using a L2 cost in equation (1.8). This latter case is particularly interesting in the light of
the literature analyzing Transformers from a neural ODE point of view (Lu et al., 2019; Sander
et al., 2022a; Geshkovski et al., 2023).

Experiments. Our results are illustrated by numerical experiments where we train convolu-
tional ResNets on CIFAR and find out that the smoothness of convolutional layers is preserved
during training, in contrast to i.i.d initialization, as shown in Figure 1.10.

Software. Our code is available at https://github.com/michaelsdr/implicit-regulariz
ation-resnets-nodes.

Published as a conference paper at ICLR 2024

and convL
i,k either to weight-tied or to i.i.d. Gaussian. Table 1 reports the accuracy of the trained

network, and whether it has Lipschitz continuous (or smooth) weights after training, depending on
the activation function � and on the initialization scheme. To assess the smoothness of the weights,
we simply resort to visual inspection. For example, Figure 3 (left) shows two random entries of the
convolutions across layers with GELU and a weight-tied initialization: the smoothness is preserved
after training. Smooth weights indicate that the residual network discretizes a neural ODE (see, e.g.,
Proposition 2). On the contrary, if an i.i.d. initialization is used, smoothness is not preserved after
training, as shown in Figure 3 (right), and the residual network does not discretize a neural ODE.
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Figure 3: Random entries of the convolutions across layers (x-axis) after training. Left: Weight-tied
initialization leads to smooth weights. Right: i.i.d. initialization leads to non-smooth weights.

Act. function Init. scheme Train Acc. Test Acc. Smooth trained weights

Identity Weight-tied 56.5 ± 0.1 59.8 ± 0.7 X
i.i.d. 56.1 ± 0.3 59.6 ± 0.7 ⇥

GELU Weight-tied 80.5 ± 0.7 79.9 ± 0.2 X
i.i.d. 89.8 ± 0.5 85.7 ± 0.1 ⇥

ReLU Weight-tied 97.4 ± 0.6 88.1 ± 0.1 ⇥
i.i.d. 98.4 ± 0.1 88.4 ± 0.5 ⇥

Table 1: Accuracy and smoothness of the trained weights depending on the choice of activation
function � and initialization scheme. We display the median over 5 runs and the interquartile range
between the first and third quantile. Smooth weights correspond to a neural ODE structure.

Table 1 conveys several important messages. First, in accordance with our theory (Theorem 4), we
obtain a neural ODE structure when using a smooth activation function and weight-tied initialization
(lines 1 and 3 of Table 1). This is not the case when using the non-smooth ReLU activation and/or
i.i.d. initialization. In fact, we prove in Appendix D that the smoothness of the weights is lost when
training with ReLU in a simple setting. Furthermore, the third line of Table 1 shows that it is possible
to obtain a reasonable accuracy with a neural ODE structure, which, as emphasized in Section 1, also
comes with theoretical and practical advantages. Nevertheless, we see an improvement in accuracy in
cases corresponding to non-smooth weights, i.e., to a network that does not discretize an ODE.

6 CONCLUSION

We study the convergence of deep residual networks to neural ODEs. When properly scaled and
initialized, residual networks trained with fixed-horizon gradient flow converge to neural ODEs as the
depth tends to infinity. This result holds for very general architectures. In the case where both training
time and depth tend to infinity, convergence holds under a local Polyak-Łojasiewicz condition. We
prove such a condition for a family of deep residual networks with linear overparameterization.

The setting of neural ODE-like networks comes with strong guarantees, at the cost of some per-
formance gap when compared with i.i.d. initialization as highlighted by the experimental section.
Extending the mathematical large-depth study to i.i.d. instead of weight-tied initialization is an
interesting problem for future research. Previous work suggests that the correct limit object is then a
stochastic differential equation (Cohen et al., 2021; Cont et al., 2022; Marion et al., 2022).

9

Figure 1.10: Random entries of the convolutions across layers (x-axis) after training. Left:
Weight-tied initialization leads to smooth weights. Right: i.i.d. initialization leads to non-smooth
weights.
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1.3 Analogy between Residual Neural Networks and Neural Ordi-
nary Differential Equations to design and study new architec-
tures [Part II of the manuscript]

In the second part of the manuscript, we introduce two new architectures and leverage the
analogy with neural ODEs to explore their properties. The first model, called Momentum ResNet,
serves as a drop-in replacement for any residual network and is designed to reduce memory
usage. The second model, termed Sinkformer, is a drop-in replacement for any Transformer
architecture. It involves replacing the row-wise stochastic attention matrices typically used in
Transformers with doubly stochastic attention matrices, achieved through the application of
Sinkhorn algorithm.

1.3.1 Momentum Residual Neural Networks [Chapter 4 of the manuscript]

We saw that training deep residual neural networks with backpropagation incurs a memory cost
that scales linearly with network depth and batch size. This is a practical bottleneck, particularly
when using graphics processing units (GPUs) (Wang et al., 2018). To address this, we propose,
in Chapter 4, Momentum Residual Neural Networks (Momentum ResNets), which introduce
a momentum term into the ResNet forward rule. More precisely, given the standard residual
network’s forward rule (1.4), we define the Momentum ResNet forward rule as:

{
vn+1 = γvn + (1− γ)f(xn, θn),
xn+1 = xn + vn+1,

where vn is a velocity term and γ ∈ [0, 1] is a momentum term.

Invertibility. This modification changes the network’s dynamics, but most importantly, it
makes Momentum ResNets invertible. Indeed, the activations at layer n can be recovered from
those at layer n+ 1 using the following equations:

{
xn = xn+1 − vn+1,
vn = 1

γ (vn+1 − (1− γ)f(xn, θn)) .

This invertibility allows for on-the-fly reconstruction of activations during the backward pass,
leading to substantial memory savings. The memory cost is reduced from O(k × d × nbatch)
to O((1 − γ) × k × d × nbatch), where k is the network depth, d is the dimensionality of the
activations, and nbatch is the batch size. Similarly to the discrete adjoint method presented in
section 1.2.1, this memory savings comes a the price of an about 1.5 times slower training: we
are trading memory for computations.

Drop-in replacement. Unlike previous invertible models (Gomez et al., 2017; Behrmann
et al., 2019; Chang et al., 2018), Momentum ResNets can serve as a drop-in replacement for
any existing ResNet block without altering the overall architecture. In practice, one can define
the Momentum ResNet counterpart of any existing ResNet in one line of code.

Continuous Limit Interpretation. In the limit of infinitesimal step size, Momentum ResNets
can be interpreted as discretizations of second-order ODEs:

εẍ+ ẋ = f(x, θ), (1.13)
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where ε = 1
1−γ . This contrasts with traditional ResNets, which correspond to first-order ODEs

(Chen et al., 2018).

ResNet:

xn+1 = xn + f(xn, ✓n)

First order ODE:

ẋ = f(x, ✓)

Momentum ResNet:

vn+1 = �vn+(1��)f(xn, ✓n)

xn+1 = xn + vn+1

Second order ODE:

"ẍ+ ẋ = f(x, ✓)

� = 0

" = 0

Continuous frameworkframeworkContinuous

Figure 4: Overview of the four di↵erent paradigms

Invertibility This procedure can be inverted exactly through:

xn = xn+1 � ⌧vn+1

vn =
vn+1 � �f(xn)

1� �
.

(25)

Of course, the di�cult point is the numerical errors that can be accumulated
through the division by (1� �). This problem is dealt in Section 3.4.

Symplectic property One can easily check that � = 0 in (24) is a su�cient
and necessary condition to get a symplectic discrete integration scheme (see
Section 2.5). Indeed, we can rewrite (24) in one line:

zn+1 = g(zn), (26)

where g is defined through

g(z) = (x+ ⌧(1� �)v + ⌧�f(x), (1� �)v + �f(x)).

Since

Jac(g) =


I + ⌧�@xf ⌧(1� �)I

�@xf (1� �)I

�
,

we have

Jac(g)TJJac(g) =


�(@xf � @xfT ) (1� �)I

�(1� �)I 0

�
.

3.3 Backpropagation for MomentumNets

We now adapt the results on backpropagation from Section 2.4 for Momentum-
Nets .

20

Figure 1.11: Overview of the four different paradigms.

Representation Capabilities. The introduction of the momentum term gives Momentum
ResNets the ability to represent a broader class of functions. It is well-known that a single
residual block has universal approximation capabilities (Cybenko, 1989), allowing any continuous
function on a compact set to be uniformly approximated by a one-layer feedforward network.
However, neural ODEs have limited representation capabilities (Teh et al., 2019; Li et al.,
2019; Teshima et al., 2020; Zhang et al., 2020b). We demonstrate that our architecture has
superior representation capabilities in the continuous limit (Proposition 4.2). We also prove its
universality in the linear case in Theorem 4.4, proving they can represent any linear mapping up
to a multiplicative factor, whereas traditional ResNets cannot.

Experiments. We evaluated Momentum ResNets on CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2010), and ImageNet (Deng et al., 2009b). Our results show that Momentum ResNets achieve
comparable accuracy to ResNets while significantly reducing memory usage.

Software. Our code is available at https://github.com/michaelsdr/momentumnet.

1.3.2 Sinkformers: Transformers with Doubly Stochastic Attention [Chapter 5
of the manuscript]

In Chapter 5, our contributions are two folds. On the one hand, we introduce a new variant of the
Transformer called Sinkformer by considering doubly stochastic attention matrices. Sinkformers
are motivated by the empirical evidence that, across various modalities, attention matrices
in Transformers get closer to doubly-stochastic matrices during training. On the other hand,
we show that Transformers and Sinkformers can be viewed as models acting on probability
measures and we study the corresponding infinite depth limit models, showing they correspond
to neural PDEs on the space of probability measures, and to Wasserstein gradient-flows for
Sinkformers.

Sinkformers. First, we extend the Transformer architecture (Vaswani et al., 2017), which is
known for its empirical success in NLP (Brown et al., 2020; Radford et al., 2019; Wolf et al.,
2019) and computer vision (Dosovitskiy et al., 2020; Zhao et al., 2020; Zhai et al., 2021; Lee et al.,
2019a), by introducing a variant called Sinkformer. The only modification in Sinkformers is
replacing the SoftMax operator in the attention mechanism with Sinkhorn’s algorithm (Sinkhorn,
1964; Cuturi, 2013; Peyré et al., 2019), which normalizes the attention matrix to be doubly
stochastic. Intuitively, such a normalization relies on a democratic principle where all points
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are matched one to another with different degrees of intensity so that more interactions are
considered than with the SoftMax normalization, as shown in Figure 1.12.

For simplicity, we focus on a one-head standard self-attention mechanism (taking H = 1 in
equation (1.8)), which we recall operates on a sequence x := (x1, x2, . . . , xT ) embedded in
dimension d:

xt ← xt +
T∑

t′=1

A1
t,t′WV xt′ ,

where the attention matrix A1 is given by A1
t,: = SoftMax(Ct,:) with Ct,t′ = (WQxt)⊤WKxt′ .

Here, WQ,WK ∈ Rm×d and WV ∈ Rd×d are the query, key, and value matrices, respectively. The
SoftMax normalization ensures that A1 is a row-stochastic matrix.

We propose to extend this normalization by applying Sinkhorn’s algorithm, which alternates
row and column normalizations of A0 = exp(C) until convergence to a doubly stochastic matrix,
denoted as A∞. The resulting Transformer variant, the Sinkformer, can be seen as interpolating
between a classical Transformer and a model that fully leverages the Sinkhorn normalization
process (Cuturi, 2013; Peyré et al., 2019).

K0 K1 K∞

Figure 1.12: Illustration of the different normalizations of attention matrices. We form
two point clouds (WQxt)1≤t≤10 (green) and (WKxt)1≤t≤10 (red). For k ∈ {0, 1,∞}, the width of
the line connecting xt to xt′ is Ak

i,j . We only display connections with Ak
i,j ≥ 10−12. For A0, one

interaction dominates. For A1 (SoftMax), one cluster is ignored. For A∞ (Sinkhorn), all points
are involved in an interaction.

Transformers as flows on the space of probability measures. Our theoretical contribu-
tions include showing that Transformers and Sinkformers can be interpreted as models acting on
probability distributions. Namely, we consider the measure framework presented in Section 1.1.6.
We denote c(x, x′) := (WQx)

⊤WKx
′ and a0 := exp(c). For some measure µ ∈M(Rd), we denote

a1(x, x′) := SoftMax(c)(x, x′) = a0(x,x′)∫
a0(x,y)dµ(y)

and similarly, we denote a∞ := Sinkhorn(c). Note
that a0, a1 and a∞ are the continuous equivalent of the matrices A0, A1 and A∞ respectively.
We also formalize the neural ODE (1.6) in this context: we show that an infinite succession of
attention blocks with tied weights between layers defines the neural PDE

∂tµ+ div(µΓk
µ) = 0,

with Γk
µ(x) :=

∫
ak(x, x′)WV x

′dµ(x′).

Under a symmetry assumption, we demonstrate that Sinkformers, in the infinite depth limit,
can be viewed as Wasserstein gradient flows (Santambrogio, 2017) for an energy minimization
problem. Specifically, we establish the following proposition.
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Proposition 1.4 (PDEs associated to a0, a1, a∞). Suppose that WK
⊤WQ =WQ

⊤WK = −WV .
Let F0 and F∞ be functionals on the space of probability measures M(Rd) defined by:

F0(µ) =
1

2

∫
a0(x, x′) d(µ⊗ µ), and F∞(µ) = −1

2

∫
a∞(x, x′) log

(
a∞(x, x′)
a0(x, x′)

)
d(µ⊗ µ).

Then, the dynamics of an infinite number of Sinkformer and Transformer attention layers are
governed by the following PDEs:

∂µ

∂t
+ div(µΓk

µ) = 0, with Γk
µ(x) =





−∇WF0(µ)(x) if k = 0,

−∇
[
log
(∫
a0(x, x′) dµ(x′)

)]
if k = 1,

−∇WF∞(µ)(x) if k =∞.

In addition, Γ1
µ(x) = −∇

[
log
(∫
a0(x, x′) dµ(x′)

)]
is not a Wasserstein gradient.

Experiments. On the experimental side, we find out that Sinkformers lead to accuracy gains
across various tasks. For instance, on the ModelNet 40 3D shape classification task, Sinkformers
outperform classical Transformers in terms of both mean and median accuracy (Wu et al., 2015;
Guo et al., 2021). Similarly, in sentiment analysis on the IMDb dataset (Maas et al., 2011) and
neural machine translation on the IWSLT’14 German to English dataset (Cettolo et al., 2014),
Sinkformers consistently achieve better performance, highlighting the practical benefits of the
proposed method.

Software. Our code is available at https://github.com/michaelsdr/sinkformers.

1.4 Transformers in Action [Part III of the manuscript]

In the third and last part of the manuscript, we explore additional insights into Transformers. First,
building on the works presented in Section 1.1.7.1, we study in Section 1.4.1 how Transformers
perform next-token prediction in an autoregressive manner. Secondly, we consider the sparse
mixture of experts framework for Transformers, introduced in Section 1.1.7.2 and show in Section
1.4.2 how tokens can be routed to experts in a differentiable manner. To achieve this, we introduce
new sparse and differentiable top-k operators.

1.4.1 How do Transformers perform In-Context Autoregressive Learning? [Chap-
ter 6 of the manuscript]

Causal Transformers are trained to predict the next token sT+1 given a sequence (also termed as
context) s1:T := (s1, · · · , sT ). An intriguing property of large Transformers is their ability to adapt
their computations given the context s1:T . In Chapter 6, we make a step towards understanding
this in-context learning ability. More precisely, building on the work of Von Oswald et al. (2023b),
we focus on a simple autoregressive (AR) process of order 1, where each sequence is generated
following the recursion sT+1 = φW (s1:T ) := WsT , and W is a randomly sampled orthogonal
matrix, referred to as the context matrix. We say that a trained Transformer autoregressively
learns this relation in-context if it satisfies the following definition.

Definition 1.5 (In-Context Autoregressive Learning). A trained Transformer is said to autore-
gressively learn in-context the AR process st+1 = Wst if it decomposes its prediction into two
steps: (1) estimating W through an in-context mapping, and (2) applying a simple prediction
mapping ψ, which is equal or closely related to φW .
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Figure 1.13: Matrices A, B, B⊤A, and P after training a linear Transformer model on
the loss ℓ(θ) with random initialization. We take d = 10 and T = 15. Left: Unitary context
case with H = 10. Right: Orthogonal context case, with H = 8 < d, leading to low rank B⊤A.
In both cases, we obtain arbitrarily small final loss and recover parameters exhibiting structure.

Our goal is to fully characterize the autoregressive in-context learning process for optimally-
trained Transformers. We consider two settings, namely the augmented and non-augmented
settings, in which the tokens are first mapped to new tokens x1:T .

Model and objective. We consider a variant of equation (1.8) by considering a model Tθ
involving Causal Linear Multi-Head Attention:

x1:T 7→
(

H∑

h=1

t∑

t′=1

Ah
t,t′B

hxt′

)

t∈{1,··· ,T}

. (1.14)

Ah is the attention matrix: Ah
t,t′ = Pt,t′⟨Ahxt | xt′⟩, with P ∈ RTmax×Tmax an optionally trainable

positional encoding. The trainable parameters are θ =
(
(Ah, Bh)1≤h≤H , P

)
.

We focus on the population loss indicating the model’s objective to predict sT+1 given x1:T ,
defined as ℓ(θ) :=

∑Tmax
T=2 EW∼W∥Tθ(x1:T )− sT+1∥2.

Augmented Setting: In the augmented setting, we consider tokens defined as xt := (0, st, st−1),
aligning with the setup used by Von Oswald et al. (2023b). We consider the model Tθ(x1:T ) =(
xT +

∑T
t=1⟨AxT |xt⟩Bxt

)
1:d
. We show that this model trained at optimality performs one step

of gradient descent on an inner objective as its in-context mapping. The result takes the following
informal form.

Proposition 1.6 (In-Context Autoregressive Learning with Gradient-Descent). Suppose the
context matrices W are unitary (i.e., W ∈ U(d)) and commute, and the model parameters are
initialized with a block structure. Then, when the loss ℓ(θ) is minimized, the optimal in-context
mapping Γθ∗ corresponds to one step of gradient on the loss L(W, x1:T ) = 1

2

∑T−1
t=1 ∥st+1 −Wst∥2

starting from the initialization W = 0, with a step size asymptotically equivalent to 3
2Tmax

as Tmax

increases.

Non-Augmented Setting: In the non-augmented setting, we consider tokens xt := st and
study a multi-head self-attention model defined as:

Tθ(x1:T ) =
H∑

h=1

T∑

t=1

PT−1,t⟨xt|AhxT−1⟩Bhxt, (1.15)

where Tθ is a linear Transformer with positional encoding. We suppose that Ah := diag(ah) and
Bh := diag(bh) are diagonal and define A := (a1, · · · , ad) ∈ RH×d, and B := (b1, · · · , bd). Our
results in Propositions 6.7 and 6.11 show that the trained Transformer learns an in-context
mapping and prediction mapping by leveraging positional encodings and head-wise orthogonality,
which is emphasized in Figure 1.13.
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Experiments. We also conduct experiments to generalize our theoretical findings when the
matrices W do not commute:

• Augmented Setting: We find that a single-step of gradient descent matches optimal Trans-
former performance, but additional layers don’t improve beyond this baseline, suggesting
that deeper models need extra mechanisms.

• Non-Augmented Setting: Our experiments confirm theoretical predictions, showing orthog-
onality across attention heads and highlighting the significant role of positional encodings
in learning geometric token relationships.

• Context Distribution: Varying context matrix distributions alters learned positional en-
codings and in-context mappings, indicating the influence of optimization on Transformer
behavior in autoregressive tasks.

Software. Our code is available at https://github.com/michaelsdr/ical.

1.4.2 Fast, differentiable and sparse top-k: a convex analysis perspective [Chapter
7 of the manuscript]

We saw in Section 1.1.7.2 how finding the top-k values and their corresponding indices in a vector
is an essential component in Transformer-based sparse mixture of experts (MoEs) (Shazeer et al.,
2017; Fedus et al., 2022) (see Figure 1.8), where the top-k router assigns each token to a subset
of k experts, or alternatively, maps each expert to a subset of k tokens.

However, the top-k operator is inherently a discontinuous piecewise affine function, with derivatives
that are either undefined or constant. This characteristic poses challenges when using it in
neural networks that are trained via gradient backpropagation. Recent approaches have sought
to address this by introducing differentiable relaxations (Amos et al., 2019; Qian et al., 2022;
Petersen et al., 2021, 2022). Despite these advancements, no current method achieves both
differentiability everywhere and sparsity.

Sparsity is particularly crucial in neural networks requiring conditional computation, such as
in sparse mixtures of experts. Without sparsity, every expert would need to process all tokens,
significantly increasing computational costs. We propose new differentiable and sparse top-k
operators. Our framework is significantly more general than the existing one and allows for
example to express top-k operators that select values in magnitude. On the algorithmic side,
in addition to pool adjacent violator (PAV) algorithms, we propose a new GPU/TPU-friendly
Dykstra algorithm to solve isotonic optimization problems.

Building a differentiable Top-k Operator Our approach is grounded in the framework
introduced by Blondel et al. (2020b), which formulates sorting and ranking as linear programs
over the permutahedron. For any mapping φ(x) := (φ(x1), . . . , φ(xn)), we define

fφ(x,w) := f(φ(x),w) and yφ(x,w) := ∇1fφ(x,w)

with
f(x,w) := max

y∈P (w)
⟨x,y⟩ and y(x,w) := argmax

y∈P (w)
⟨x,y⟩ = ∇1f(x,w),

where P (w) := conv({wσ : σ ∈ Σ}) ⊂ Rn is the permutahedron associated to a vector w. It is
easily seen that using φ(x) = x leads to a top-k mask operator and using φ(x) = 1

2x
2 leads to a

top-k in magnitude. We then introduce a p-norm regularization term R(y) = 1
p∥y∥

p
p by defining
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f∗φ,R(y,w) := f∗φ(y,w) +R(y). This regularization induces smoothness in the operator, enabling
gradients to be computed efficiently during backpropagation. For instance, with p = 4/3, the
regularized operator becomes continuously differentiable.

Going back to the primal, we show in Proposition 7.2 that

fφ,R(x,w) := max
y∈Rn

⟨y,x⟩ − f∗φ(y,w)−R(y) = min
u∈Rn

R∗(x− u) + fφ(u,w)

and
yφ,R(x,w) := y∗ = ∇R∗(x− u∗) = ∇1fφ,R(x,w).

The relaxed top-k operators are then obtained using φ(x) = 1
2x

2 to obtain a regularized top-k
in magnitude and φ(x) = x to obtain a regularized top-k mask. We illustrate our operators in
Figure 1.14.
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Figure 1.14: Illustration of our differentiable and sparse top-k mask. For k = 2, we
consider θ(s) = (3, 1,−1 + s, s) ∈ R4 and plot topkmask(θ(s))2 + topkmask(θ(s))3 as a function
of s. We compare the hard version (no regularization) with our proposed operator using p-norm
regularization: p = 2 leads to differentiable a.e. operator; p = 4/3, leads to a differentiable
operator. Both operators are sparse: they are exactly 0 for some values of s.

Computation. We show in Propositions 7.5 and 7.6 that the computations of our differentiable
top-k operators is reduced to solving an isotonic regression problem. We leverage efficient
algorithms like Pool Adjacent Violators (PAV) algorithm (Best et al., 2000), which operates
in O(n log n) time, to compute the top-k operator. In cases where GPU/TPU acceleration
is required, we propose using Dykstra’s algorithm (Boyle and Dykstra, 1986; Combettes and
Pesquet, 2011) (see Algorithm 7.7). Our implementation in JAX supports efficient gradient
calculations without the need for backpropagation through unrolled iterations of the computation
of the relaxed top-k operator.

Experimental results As mentioned, a key feature of our differentiable top-k operator is its
ability to maintain sparsity, which is critical in applications such as sparse mixture of experts
(MoEs). We experimentally show that using our differentiable top-k increases the accuracy of a
sparse of mixture model on the JFT-300M dataset (Sun et al., 2017), a dataset with more than
305 million images. Our model has 32 experts, each assigned to k = 28 tokens selected among
n = 400 at each MoE layer. We compare the validation accuracy when using the baseline (hard
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top-k) with our relaxed operator in Figure 7.7. We use p = 2 and Dykstra’s projection algorithm,
as we found it was the fastest method on TPU.

Software. Our code is available at https://github.com/google-research/google-researc
h/tree/master/sparse_soft_topk.
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2
Do Residual Neural Networks discretize Neu-
ral Ordinary Differential Equations?

Neural Ordinary Differential Equations (Neural ODEs) are the continuous analog of Residual
Neural Networks (ResNets). We investigate whether the discrete dynamics defined by a ResNet
are close to the continuous one of a Neural ODE. We first quantify the distance between the
ResNet’s hidden state trajectory and the solution of its corresponding Neural ODE. Our bound
is tight and, on the negative side, does not go to 0 with depth N if the residual functions are
not smooth with depth. On the positive side, we show that this smoothness is preserved by
gradient descent for a ResNet with linear residual functions and small enough initial loss. It
ensures an implicit regularization towards a limit Neural ODE at rate 1

N , uniformly with depth
and optimization time. As a byproduct of our analysis, we consider the use of a memory-free
discrete adjoint method to train a ResNet by recovering the activations on the fly through a
backward pass of the network, and show that this method theoretically succeeds at large depth if
the residual functions are Lipschitz with the input. We then show that Heun’s method, a second
order ODE integration scheme, allows for better gradient estimation with the adjoint method
when the residual functions are smooth with depth. We experimentally validate that our adjoint
method succeeds at large depth, and that Heun’s method needs fewer layers to succeed. We
finally use the adjoint method successfully for fine-tuning very deep ResNets without memory
consumption in the residual layers.

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3 ResNets as discretization of Neural ODEs . . . . . . . . . . . . . . . . . . . . 45

2.3.1 Distance to an ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Linear Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Adjoint Method in Residual Networks . . . . . . . . . . . . . . . . . . . . . . 49
2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.1 Validation of our scaled model . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.2 Adjoint method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.A.1 Proof of Prop. 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

41



2.A.2 Proof of Prop. 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.A.3 Proof of lemma 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.A.4 Proof of lemma 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.A.5 Proof of Th. 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.A.6 Proof of Prop. 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.A.7 Proof of Prop. 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.A.8 Proof of Prop. 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.A.9 Proof of Prop. 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.B Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.B.1 CIFAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.B.2 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.C Architecture details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1 Introduction

Problem setup. Residual Neural Networks (ResNets) (He et al., 2016a,b) keep on outper-
forming state of the art in computer vision (Wightman et al., 2021; Bello et al., 2021), and
more generally skip connections are widely used in a various range of applications (Vaswani
et al., 2017; Dosovitskiy et al., 2020). A ResNet of depth N iterates, starting from x0 ∈ Rd,
xn+1 = xn + f(xn, θ

N
n ) and outputs a final value xN ∈ Rd where f is a neural network called

residual function. In this work, we consider a simple modification of this forward rule by letting
explicitly the residual mapping depend on the depth of the network:

xn+1 = xn +
1

N
f(xn, θ

N
n ). (2.1)

On the other hand, a Neural ODE (Chen et al., 2018) uses a neural network φΘ(x, s), that takes
time s into account, to parameterise a vector field (Kidger, 2022) in a differential equation, as
follows,

dx

ds
= φΘ(x(s), s) with x(0) = x0, (2.2)

and outputs a final value x(1) ∈ Rd, the solution of Eq.(2.2). The Neural ODE framework
enables learning without storing activations (the xn’s) using the adjoint state method, hence
significantly reducing the memory usage for backpropagation that can be a bottleneck during
training (Wang et al., 2018; Peng et al., 2017; Zhu et al., 2017; Gomez et al., 2017). Neural
ODEs also provide a theoretical framework to study deep learning models from the continuous
viewpoint, using the arsenal of ODE theory (Teh et al., 2019; Li et al., 2019; Teshima et al.,
2020). Importantly, they can also be seen as the continuous analog of ResNets. Indeed, consider
for N an integer, the Euler scheme for solving Eq. (2.2) with time step 1

N starting from x0
and iterating xn+1 = xn + 1

NφΘ(xn,
n
N ). Under mild assumptions on φΘ, this scheme is known

to converge to the true solution of Eq. (2.2) as N goes to +∞. Also, if Θ = (θNn )i∈[N−1] and
φΘ(.,

n
N ) = f(., θNn ), then the ResNet equation Eq. (2.1) corresponds to a Euler discretization

with time step 1
N of Eq. (2.2). However, for a given ResNet with fixed depth N and weights, the

activations in Eq. (2.1) can be far from the solution of Eq. (2.2). This is illustrated in Figure 2.1
where we show that a deep ResNet can easily break the topology of the input space, which is
impossible for a Neural ODE. In this chapter, we study the link between ResNets and Neural
ODEs. We make the following contributions:

42



Input of the network
N

um
b
er

of
la

ye
rs

Neural ODE unlike

Input of the network

N
um

b
er

of
la

ye
rs

Neural ODE like

Input of the network

N
um

b
er

of
la

ye
rs

Neural ODE unlike

Input of the network
N

um
b
er

of
la

ye
rs

Neural ODE unlike

Figure 2.1: Trajectory of ResNets with 300 layers. Left: we learn x→ x
2 , trajectories are smooth

and do not intersect. Right: we learn x→ −x
2 , trajectories are not smooth and intersect.

• In Section 2.3, we propose a framework to define a set of associated Neural ODEs for a given
ResNet. We control the error between the discrete and the continuous trajectory. We show that
without additional assumptions on the smoothness with depth of the residual functions, this
error does not go to 0 as N →∞ (Prop. 2.2). However, we show that under some assumptions
on the weight initialization, the trained parameters of a deep linear ResNet uniformly (with
respect to both depth and training time) approach a Lipschitz function as the depth N of the
network goes to infinity, at speed 1

N (Prop. 2.4 and Th. 2.5). This result highlights an implicit
regularization towards a limit Neural ODE.

• In Section 2.4, we investigate a simple technique to train ResNets without storing activations.
Inspired by the adjoint method, we propose to recover the approximated activations during
the backward pass by using a reverse-time Euler scheme. We control the error for recovering
the activations and gradients with this method. We show that if the residuals of the ResNet
are bounded and Lipschitz continuous, with constants independent of N , then this error scales
in O( 1

N ) (Prop. 2.9). Hence, the adjoint method needs a large number of layers to lead to
correct gradients (Prop. 2.10). We then consider a smoothness-dependent reconstruction with
Heun’s method to bound the error between the true and approximated gradient by a term that
depends on 1

N times the smoothness in depth of the residual functions, hence guaranteeing a
better approximation when successive weights are close one to another (Prop. 2.11 and 2.12).

• In Section 2.5, on the experimental side, we show that the adjoint method fails when training a
ResNet 101 on ImageNet. Nevertheless, we empirically show that very deep ResNets pretrained
with tied weights (constant weights: θNn = θ ∀n) can be refined -using our adjoint method- on
CIFAR-10 and ImageNet by untying their weights, leading to a better test accuracy. Last, but
not least, we show using a ResNet architecture with heavy downsampling in the first layer
that our adjoint method succeeds at large depth and that Heun’s method leads to a better
behaved training, hence confirming our theoretical results.
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2.2 Background and related work

Neural ODEs. Neural ODEs are a class of implicit deep learning models defined by an ODE
where a neural network parameterises the vector field (Weinan, 2017b; Chen et al., 2018; Teh
et al., 2019; Sun et al., 2018; Weinan et al., 2019; Lu et al., 2018; Ruthotto and Haber, 2019;
Kidger, 2022). Given an input x0, the output of the model is the solution of the ODE (2.2) at
time 1. From a theoretical viewpoint, the expression capabilities of Neural ODEs have been
investigated in (Cuchiero et al., 2020; Teshima et al., 2020; Li et al., 2019) and the Neural
ODE framework has been used to better understand the dynamics of more general architectures
that include residual connections such as Transformers (Sander et al., 2022a; Lu et al., 2019).
Experimentaly, Neural ODEs have been successful in a various range of applications, among
which physical modelling (Greydanus et al., 2019; Cranmer et al., 2019) and generative modeling
(Chen et al., 2018; Grathwohl et al., 2018). However, there are many areas where Neural ODEs
have failed to replace ResNets, for instance for building computer vision classification models.
Neural ODEs fail to compete with ResNets on ImageNet, and to the best of our knowledge,
previous works using Neural ODEs on ImageNet consider weight-tied architectures and only
achieves the same accuracy as a ResNet18 (Zhuang et al., 2021). It has also been shown that
Neural ODEs sometimes do not admit a continuous interpretation at all (Ott et al., 2021).

Implicit Regularization of ResNets towards ODEs. Recent works have studied the link
between ResNets and Neural ODEs. In (Cohen et al., 2021), the authors carry experiments to
better understand the scaling behavior of weights in ResNets as a function of the depth. They
show that under the assumption that there exists a scaling limit θ(s) = Nβ lim θN⌊Ns⌋ for the
weights of the ResNets (with 0 < β < 1) and if the scale of the ResNet is 1

Nα with 0 < α < 1
and α + β = 1, then the hidden state of the ResNet converges to a solution of a linear ODE.
In this chapter, we are interested in the case where α = 1, which seems more natural since it
is the scaling that appears in Euler’s method with step 1

N . In addition, we do not assume the
existence of a scaling limit θ(s) = lim θN⌊Ns⌋. In subsection 2.3.2, we demonstrate the existence
of this scaling limit in the linear setting, under some assumptions. The recent work (Cont
et al., 2022) shows results regarding linear convergence of gradient descent in ResNets and prove
the existence of an 1

2 -Hölder continuous scaling limit as N → ∞ with a scaling factor for the
residuals in 1√

N
which is different from ours ( 1

N ). In contrast, we show that our limit function is
Lipschitz continuous, which is a stronger regularity. This is to be linked with the recent work of
Marion et al. (2022), where the authors show that whereas the 1√

N
scaling corresponds to the

proper one for standard i.i.d. initializations, 1
N is the proper scaling for smooth initialization to

obtain non-trivial behaviour (other choices lead to explosion or to identity Marion et al. (2022)).
More generally, recent works have proved the convergence of gradient descent training of ResNet
when the initial loss is small enough. This include ResNet with finite width but arbitrary large
depth (Du et al., 2019; Liu et al., 2020) and ResNet with both infinite width and depth (Lu
et al., 2020; Barboni et al., 2021). These convergence proofs leverage an implicit bias toward
weights with small amplitudes. They however leave open the question of convergence of individual
weights as depth increases, which we tackle in this work in the linear case. This requires showing
an extra bias toward weights with small variations across depth.

Memory bottleneck in ResNets. Training deep learning models involve graphics processing
units (GPUs) where memory is a practical bottleneck (Wang et al., 2018; Peng et al., 2017; Zhu
et al., 2017). Indeed, backpropagation requires to store activations at each layer during the
forward pass. Since samples are processed using mini batches, this storage can be important. For
instance, with batches of size 128, the memory needed to compute gradients for a ResNet 152 on
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ImageNet is about 22 GiB. Note that the memory needed to store the parameters of the model is
only 220 MiB, which is negligible compared to the memory needed to store the activations. Thus,
designing deep invertible architectures where one can recover the activations on the fly during the
backpropagation iterations has been an active field in recent years Gomez et al. (2017); Sander
et al. (2021); Jacobsen et al. (2018). In this work, we propose to approximate activations using a
reverse-time Euler scheme, as we detail in the next subsection.

Adjoint Method. Consider a loss function L(xN ) for the ResNet (2.1). The backpropagation
equations (Baydin et al., 2018) are

∇θNn−1
L =

1

N
[∂θf(xn−1, θ

N
n−1)]

⊤∇xnL, ∇xn−1L = [I +
1

N
∂xf(xn−1, θ

N
n−1)]

⊤∇xnL. (2.3)

Now, consider a loss function L(x(1)) for the Neural ODE (2.2). The adjoint state method
(Pontryagin, 1987; Chen et al., 2018) gives

∇Θ(s)L = ∂Θ[φΘ(x(s), s)]
⊤∇x(s)Lds, −∇̇x(s)L(s) = [∂xφΘ(x(s), s)]

⊤∇x(s)L. (2.4)

Note that if Θ = (θNn )n∈[N−1] and φΘ(.,
n
N ) = f(., θNn ), then Eq. (2.3) corresponds to a Euler

discretization with time step 1
N of Eq. (2.4). The key advantage of using Eq. (2.4) is that one

can recover x(s) on the fly by solving the Neural ODE (2.2) backward in time starting from x(1).
This strategy avoids storing the forward trajectory (x(s))s∈[0,1] and leads to a O(1) memory
footprint (Chen et al., 2018). In this work, we propose to use a discrete adjoint method by using
a reverse-time Euler scheme for approximately recovering the activations in a ResNet (Section
2.4). Contrarily to other models such as RevNets (Gomez et al., 2017) (architecture change) or
Momentum ResNets (Sander et al., 2021) (forward rule modification) which rely on an exactly
invertible forward rule, the proposed method requires no change at all in the network, but gives
approximate gradients.

Notations. For k ∈ N, Ck is the set of functions f : Rd → Rd k times differentiable with
continuous kth differential. If f ∈ C1, ∂xf(x)[y] is the differential of f at x evaluated in y.
For K ⊂ Rd compact, ∥.∥ a norm and f a continuous function on Rd, we denote ∥f∥K∞ =
supx∈K ∥f(x)∥.

2.3 ResNets as discretization of Neural ODEs

In this section we first show that without further assumptions, the distance between the discrete
trajectory and the solution of associated ODEs can be constant with respect to the depth of the
network if the residual functions lack smoothness with depth. We then present a positive result
by studying the linear case where we show that, under some hypothesis (small loss initialization
and initial smoothness with depth), the ResNet converges to a Neural ODE as the number of
layers goes to infinity. We show that this convergence is uniform with depth and optimization
time.

2.3.1 Distance to an ODE

We first define associated Neural ODEs for a given ResNet.

Definition 2.1. We say that a neural network φΘ : Rd × R → Rd smoothly interpolates the
ResNet Eq. (2.1). if φΘ is smooth and ∀n ∈ {0, ..., N − 1}, φΘ(.,

n
N ) = f(., θNn ).
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Note that we omit the dependency of Θ in N to simplify notations. For example, for a given
ResNet, there are two natural ways to interpolate it with a Neural ODE, either by interpolating
the residuals, or by interpolating the weights. Indeed, one can interpolate the residuals with
φΘ(·, s) = (n+1−Ns)f(., θNn )+(Ns−n)f(·, θNn+1) when s ∈ [ nN ,

n+1
N ], or interpolate the weights

with φΘ(·, s) = f(·, (n+1−Ns)θNn +(Ns−n)θNn+1) for s ∈ [ nN ,
n+1
N ]. If θNn = θN does not depend

on n, then both interpolations are identical and one can simply consider φΘ(x, s) = f(x, θN ),
∀(x, s).
We now consider any smooth interpolation φΘ for the ResNet (2.1) and a Euler scheme for the
Neural ODE (2.2) with time step 1

N .

Proposition 2.2 (Approximation error). We suppose that φΘ is C1, and L-Lipschitz with
respect to x, uniformly in s. Note that this implies that the solution of Eq. (2.2) is well defined,
unique, C2, and that the trajectory is included in some compact K ⊂ Rd. Denote CN :=

∥∂sφΘ + ∂xφΘ[φΘ]∥K×[0,1]
∞ . Then one has for all n: ∥xn − x( n

N )∥ ≤ eL−1
2NL CN if L > 0 and

∥xn − x( n
N )∥ ≤ CN

2N if L = 0.

For a full proof, see appendix 2.A.1. Note that this result extends Theorem 3.2 from (Zhuang
et al., 2020) to the non-autonomous case: our bound depends on ∂sφΘ. Finally, our bound is
tight. Indeed, for φΘ(x, s) = as + b for a, b ∈ Rd, we get ∂sφΘ + ∂xφΘ[φΘ] = a, L = 0 and
∥x(1)− xN∥ = ∥a∥

2N .

Implication. The tightness of our bound shows that closeness to the ODE solution is not
guaranteed, because we do not know whether CN/N → 0. Indeed, consider first the residual
interpolation φΘ(x, s) =

(
(n+ 1−Ns)f(x, θNn ) + (Ns− n)f(x, θNn+1)

)
)⊮s∈[ n

N
,n+1

N
] and the sim-

ple case where ∂xφΘ[φΘ] = 0. We get ∂sφΘ(x, s) = N(f(x, θNn+1)− f(x, θNn ))⊮s∈[ n
N
,n+1

N
], which

corresponds to the discrete derivative. It means that although there is a 1
N factor in our bound,

the time derivative term – without further regularity with depth of the weights, which is at the
heart of subection 2.3.2 – usually scales with N : CN

N = O(1). As a first example, consider the
simple case where f(x, θNn ) = n. This gives xN = x0 +

(N−1)
2 while the integration of the Neural

ODE (2.2) leads to x(1) = x0 +
N
2 because φΘ(x, s) = Ns, so the ∥xN − x(1)∥ = 1

2 is not small.
Intuitively, this shows that weights cannot scale with depth when using the residual interpolation.
Now, consider the weight interpolation, θNn = (−1)n and suppose f is written as f(x, θ) = θ2.
This gives φΘ(., s) = (2Ns− (2n+ 1))2 when s ∈ [ nN ,

n+1
N ]. Integrating, we get x(1) = 1

3 while
the output of the ResNet is xN = 1. Hence ∥xN − x(1)∥ = 2

3 is also not small, even though the
weights are bounded. Thus, one needs additional regularity assumptions on the weights of the
ResNet to obtain a Neural ODE in the large depth limit. Intuitively if the weights are initialized
close from one another and they are updated using gradient descent, they should stay close from
one another during training, since the gradients in two consecutive layers will be similar, as
highlighted in Eq. (2.3). Indeed, we see that if xn and xn+1 are close, then ∇xnL and ∇xn+1L
are close, and then if θNn and θNn+1 are close, ∇θNn

L and ∇θNn+1
L are also close. In subsection

2.3.2, we formalize this intuition and present a positive result for ResNets with linear residual
functions. More precisely, we show that with proper initialization, the difference between two
successive parameters is in 1

N during the entire training. Furthermore, we show that the weights
of the network converge to a smooth function, hence defining a limit Neural ODE.

2.3.2 Linear Case

As a further step towards a theoretical understanding of the connections between ResNets
and Neural ODEs we investigate the linear setting, where the residual functions are written
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f(x, θ) = θx for any θ ∈ Rd×d. It corresponds to a deep matrix factorization problem (Zou
et al., 2020a; Bartlett et al., 2018; Arora et al., 2019, 2018). As opposed to these previous works,
we study the infinite depth limit of these linear ResNets with a focus on the learned weights.
We show that, if the weights are initialized close one to another, then at any training time,
the weights stay close one to another (Prop. 2.4) and importantly, they converge to a smooth
function of the continuous depth s as N →∞ (Th. 2.5). All the proofs are available in appendix
2.A.

Setting. Given a training set (xk, yk)k∈[n] in Rd, we solve the regression problem of mapping
xk to yk with a linear ResNet, i.e. f(x, θ) = θx, of depth N and parameters (θN1 , . . . , θ

N
N ). The

ResNet therefore maps xk to ΠNxk where ΠN :=
∏N

n=1(Id +
θNn
N ) = (Id +

θNN
N ) · · · (Id + θN1

N ). It is
trained by minimizing the average errors ∥ΠNxk − yk∥22, which is equivalent to the deep matrix
factorization problem:

argmin
(θNn )i∈[N−1]

L(θN1 , . . . , θ
N
N ) := ∥ΠN −B∥2Σ, (2.5)

where ∥A∥2Σ = Tr(AΣAT ), Σ is the empirical covariance matrix of the data: Σ := 1
n

∑n
k=1 xkx

⊤
k ,

and B := 1
n

∑n
k=1 ykx

⊤
k Σ

−1. As is standard, we suppose that Σ is non degenerated. We denote
by M > 0 (resp. m > 0) its largest (resp. smallest) eigenvalue.

Gradient. We denote ΠN
:n := (Id +

θNN
N ) · · · (Id +

θNn+1

N ) and ΠN
n: := (Id +

θNn−1

N ) · · · (Id + θN1
N )

and write the gradient ∇N
n (t) = ∇θNn

L(θN1 (t), ..θNn (t), .., θNN (t)). The chain rule gives N∇N
n =

ΠN⊤
:n (ΠN − B)ΣΠN⊤

n: . Intuitively, as N goes to +∞, the products ΠN , ΠN
:n and ΠN

n: should
converge to some limit, hence we see that N∇N

n scale as 1. Therefore, we train θNn by the rescaled
gradient flow dθNn

dt (t) = −N∇N
n (t) to minimize L and denote ℓN (t) = L(θN1 (t), . . . , θNN (t)).

Two continuous variables involved. Our results involve two continuous variables: s ∈ [0, 1]
is the depth of the limit network and corresponds to the time variable in the Neural ODE,
whereas t ∈ R+ is the gradient flow time variable. As is standard in the analysis of convergence
of gradient descent for linear networks, we consider the following assumption:

Assumption 2.3. Suppose that at initialisation one has
√
ℓN (0) < m

4
√
2Me3

and ∥θNn (0)∥ ≤ 1
4 .

Assumption 2.3 is the classical assumption in the literature (Zou et al., 2020a; Barboni et al.,
2021) to prove linear convergence of our loss and that the θNn (t)’s stay bounded with t. Note that
this bounded norm assumption implies that 1

N θn(0) = O( 1
N ). This is in contrast with classical

initialization scales in the feedforward case where the initialization only depends on width He
et al. (2015a). However this initialization scale is coherent with those of ResNets for which the
scale has to depend on depth (Yang and Schoenholz, 2017; Marion et al., 2022). In addition, the
experimental findings in Cohen et al. (2021) suggest that the weights in ResNets scale in 1

Nβ

with β > 0.

We now prove an implicit regularization result showing that if at initialization, in addition to
assumption 2.3, the weights are close from one another (O( 1

N )), they will stay at distance O( 1
N ):

the discrete derivative stay in O( 1
N ), which is a central result to consider the infinite depth limit

in our Th. 2.5.

Proposition 2.4 (Smoothness in depth of the weights). Suppose assumption 2.3. Suppose that
there exists C0 > 0 independent of n and N such that ∥θNn+1(0)− θNn (0)∥ ≤ C0

N . Then, ∀t ∈ R+,
∥θNn (t)∥ < 1

2 , and θNn (t) admits a limit ψN
n as t→ +∞. Moreover, there exists C > 0 such that

∀t ∈ R+, ∥θNn+1(t)− θNn (t)∥ ≤ C
N .
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Figure 2.2: L2 norm ∥ΨN (t, .)−Ψ(t, .)∥2 (w.r.t depth s) for different training iterations t (horizontal
axis) and different depth N (vertical axis). As predicted by Th. 2.5, this distance goes to 0 as N → +∞.

For a full proof, see appendix 2.A.2. The inequality ∥θNn+1(t) − θNn (t)∥ ≤ C
N corresponds to a

discrete Lipschitz property in depth. Indeed, for s ∈ [0, 1] and t ∈ R+, let ψN (s, t) = θN⌊Ns⌋(t).
Then our result gives ∥ψN (n+1

N , t)−ψN ( n
N , t)∥ ≤ C

N which implies that ∥ψN (s1, t)−ψN (s2, t)∥ ≤
C|s1− s2|+ C

N . We now turn to the infinite depth limit N →∞. Th. 2.5 shows that there exists
a limit function ψ such that ψN converges uniformly to ψ in depth s and optimization time t.
Furthermore, this limit is Lipschitz continuous in (s, t). In addition, we show that the ResNet
ΠN converges to the limit Neural ODE defined by ψ that is preserved along the optimization flow,
exhibiting an implicit regularization property of deep linear ResNets towards Neural ODEs.

Theorem 2.5 (Existence of a limit map). Suppose assumption 2.3, ∥θNn+1(0)− θNn (0)∥ ≤ C0
N for

some C0 > 0 and that there exists a function ψinit : [0, 1]→ Rd×d such that ψN (s, 0)→ ψinit(s) in
∥.∥∞ uniformly in s as N →∞, at speed 1

N . Then the sequence (ψN )N∈N uniformly converges (in
∥.∥∞ w.r.t (s, t)) to a limit ψ Lipschitz continuous in (s, t) and ∥ψ−ψN∥∞ = O( 1

N ). Furthermore,
ΠN uniformly converges as N →∞ to the mapping x0 → x1 where x1 is the solution at time 1
of the Neural ODE dx

ds (s) = ψ(s, t)x(s) with initial condition x0.

We illustrate Th. 2.5 in Figure 2.2. The assumption on the existence of ψinit ensures a
convergence at speed 1

N to a Neural ODE at optimization time 0. Note that for instance, the
constant initialization θNn (0) = θ0 ∈ Rd×d satisfies this hypothesis. In order to prove Th. 2.5, for
which a full proof is presented in appendix 2.A.5, we first present a useful lemma: the weights of
the network have at least one accumulation point.

Lemma 2.6 (Existence of limit functions). For s ∈ [0, 1] and t ∈ R+, let ψN (s, t) = θN⌊Ns⌋(t).
Under the assumptions of Prop. 2.4, there exists a subsequence ψσ(N) and ψσ : [0, 1]×R+ → Rd×d

Lipschitz continuous with respect to both parameters s and t such that ψσ(N) → ψσ uniformly (in
∥.∥∞ w.r.t (s, t)).

Lemma 2.6 is proved in appendix 2.A.3, and gives us the existence of a Lipschitz continuous
accumulation point, but not the uniqueness nor the convergence speed. For the uniqueness, we
show in appendix 2.A.5 that, under the assumptions of Th. 2.5, one has that any accumulation
point of ψσ satisfies the limit Neural ODE

∂tψσ(., t) = F (ψσ(., t)), ψσ(., 0) = ψinit(., 0),
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and show that F satisfies the hypothesis of the Picard–Lindelöf theorem, hence showing the
uniqueness of ψ. We finally show that, as intuitively expected, trajectories of the weights of our
linear ResNets of depth N and 2N remain close one to each other. This gives the convergence
speed in Th. 2.5. See appendix 2.A.4 for a proof.

Lemma 2.7 (Closeness of trajectories). Suppose asumption 2.3, ∥θNn+1(0) − θNn (0)∥ ≤ C0
N for

some C0 > 0 and that ∥θNn (0)− θ2N2n (0)∥ = O( 1
N ). Then ∀t ∈ R+, ∥θNn (t)− θ2N2n (t)∥ = O( 1

N ).

2.4 Adjoint Method in Residual Networks

In this section, we focus on a particularly useful feature of Neural ODEs and its applicability
to ResNets: their memory free backpropagation thanks to the adjoint method. We consider a
ResNet (2.1) and try to invert it using reverse mode Euler discretization of the Neural ODE (2.2)
when φΘ is any smooth interpolation of the ResNet. This corresponds to defining x̃N = xN and
iterate for n ∈ {N − 1, . . . 0}:

x̃n = x̃n+1 −
1

N
f(x̃n+1, θ

N
n ). (2.6)

We then use the approximated activations (x̃n)n∈[N ] as a proxy for the true activations (xn)n∈[N ]

to compute gradients without storing the activations:

∇̃θNn−1
L =

1

N
[∂θf(x̃n−1, θ

N
n−1)]

⊤∇x̃nL, ∇x̃n−1L = [I +
1

N
∂xf(x̃n−1, θ

N
n−1)]

⊤∇x̃nL. (2.7)

The approximate recovery of the activations in Eq. (2.6) is implementable for any ResNet: there
is no need for particular architecture or forward rule modification. The drawback is that the
recovery is only approximate. We devote the remainder of the section to the study of the
corresponding errors and to error reduction using second order Heun’s method. We first show
that, if f(., θNn ) and its derivative are bounded by a constant independent of N , then the error for
reconstructing the activations in the backward scheme (2.6) is O( 1

N ). Proofs of the theoretical
results are in appendix 2.A.

Error for reconstructing activations. We consider the following assumption:

Assumption 2.8. There exists constants Cf and Lf such that ∀N ∈ N, ∀n ∈ [N − 1],
∥f(., θNn )∥∞ ≤ Cf and ∥∂x[f(., θNn )]∥∞ ≤ Lf .

Then the error made by reconstructing the activations is in O( 1
N ).

Proposition 2.9 (Reconstruction error). With assumption 2.8, one has ∥xn− x̃n∥ ≤ (e
Lf−1)Cf

N +
O( 1

N2 ).

Prop. 2.9 shows a slow convergence of the error for recovering activations. This bound does not
depend on the discrete derivative f(., θNn+1)−f(., θNn ), contrarily to the errors between the ResNet
activations and the trajectory of the interpolating Neural ODE in Prop 2.2. In summary, even
though regularity in depth is necessary to imply closeness to a Neural ODE, it is not necessary
to recover activations, and neither gradients, as we now show.

Error in gradients when using the adjoint method. We use the result obtained in Prop.
2.9 to derive a bound in O( 1

N2 ) on the error made for computing gradients using formulas
(2.7).
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Proposition 2.10 (Gradient error). Suppose assumption 2.8. Suppose in addition that ∂xf(., θ)
admits a Lipschitz constant Ldf , ∂θf(., θ) admits a Lipschitz constant ∆, and an upper bound Ω,
all of which are independent of θ. Then one has ∥∇̃θNn

L−∇θNn
L∥ = O( 1

N2 ).

For a proof, see appendix 2.A.7, where we give the dependency of our upper bound as a function
of ∆, Lf , Cf ,Ω and Ldf .

Smoothness-dependent reconstruction with Heun’s method. The bounds in Prop. 2.9
and 2.10 do not depend on the smoothness with respect to the weights of the f(., θNn ). Only the
magnitude of the residuals plays a role in the correct recovery of the activations and estimation of
the gradient. Hence, there is no apparent benefit of having such a network behave like a Neural
ODE. We now turn to Heun’s method, a second order integration scheme, and show that in this
case smoothness in depth of the network improves activation recovery. A HeunNet (Maleki et al.,
2021) of depth N with parameters θN1 , . . . , θNN iterates for n = 0, . . . , N − 1:

yn = xn +
1

N
f(xn, θ

N
n ) and xn+1 = xn +

1

2N
(f(xn, θ

N
n ) + f(yn, θ

N
n+1)). (2.8)

These forward iterations can once again be approximately reversed by doing for n = N −
1, . . . , 0:

ỹn = x̃n+1 −
1

N
f(x̃n+1, θ

N
n+1) and x̃n = x̃n+1 −

1

2N
(f(x̃n+1, θ

N
n+1) + f(ỹn, θ

N
n )), (2.9)

which also enables approximated backpropagation without storing activations. When discretizing
an ODE, Heun’s method has a better O( 1

N2 ) error, hence we expect a better recovery than in
Prop. 2.9. Indeed, we have:

Proposition 2.11 (Reconstruction error - Heun’s method). Assume assumption 2.8. Denote by
L′
f the Lipschitz constant of x 7→ 1

2(f(x, θ
N
n+1) + f(x − 1

N f(x, θ
N
n+1), θ

N
n )), by Lθ the Lispchitz

constant of θ 7→ f(·, θ) and by L′
θ that of θ 7→ ∂xf(., θ). Let C ′

f = 1
4L

′
θLθ. Finally, define

∆N
θ := maxn ∥θNn+1−θNn ∥2. Using Heun’s method, we have: ∥xn−x̃n∥ ≤

(e
L′
f−1)C′

f

L′
fN

×∆N
θ +O( 1

N2 ).

This bound is very similar to that in proposition 2.9, with an additional factor ∆N
θ . Hence, we

see that under the condition that ∆N
θ = O( 1

N ), the reconstruction error ∥xn − x̃n∥ is in O( 1
N2 ).

In the linear case, we have proven under some hypothesis in Prop. 2.4 that such a condition on
∆N

θ holds during training. Consequently, the smoothness of the weights of a HeunNet in turns
helps it recover the activations, while it is not true for a ResNet. This provides better guarantees
on the error on gradients:

Proposition 2.12 (Gradient error - Heun’s method). Suppose assumption 2.8. Suppose in
addition that ∂xf(., θ) admits Lipschitz constant, ∂θf(., θ) admits a Lipschitz constant and an
upper bound, all of which are independent of θ. Then one has ∥∇̃θNn

L−∇θNn
L∥ = O(

∆N
θ

N2 + 1
N3 ).

Just like with activation, we see that Heun’s method allows for a better gradient estimation when
the weights are smooth with depth. Equivalently, for a fixed depth, this proposition indicates
that HeunNets have a better estimation of the gradient with the adjoint method than ResNets
which ultimately leads to better training and overall better performances by such memory-free
model.
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Figure 2.3: (a) Test accuracy on CIFAR-10 as a function of the number of blocks in each layer of
the ResNet. Within each layer, weights are tied (3 runs). (b) Failure of the adjoint method with a
ResNet-101 on ImageNet (the approximated gradients are only used in the third layer of the network,
that contains 23 blocks). (c) Relative error between the approximated gradients using adjoint method
and the true gradient, whether using a ResNet or a HeunNet. Each point corresponds to one parameter.

Table 2.1: Test accuracy (ResNet-101)

ResNet-101 Ours

CIFAR-10 95.5± 0.1% 95.5± 0.1%

ImageNet 77.8% 77.9%

2.5 Experiments

We now present experiments to investigate the applicability of the results presented in this
chapter. We use Pytorch (Paszke et al., 2017) and Nvidia Tesla V100 GPUs. Our code is
available on GitHub. All the experimental details are given in appendix 2.B, and we provide a
recap on ResNet architectures in appendix 2.C.

2.5.1 Validation of our scaled model

The ResNet model (2.1) is different from the classical ResNet because of the 1
N term. This

makes the model depth aware, and we want to study the impact of this modification on the
accuracy on CIFAR and ImageNet. We first train a ResNet-101 (He et al., 2016a) on CIFAR-10
and ImageNet using the same hyper-parameters. Experimental details are in appendix 2.B and
results are summarized in table 2.1, showing that the explicit addition of the step size 1

N does
not affect accuracy. In strike contrast, the classical ResNet rule without the scaling 1

N makes the
network behave badly at large depth, while it still works well with our scaling 1

N , as shown in
Figure 2.3 (a). On ImageNet, the scaling 1

N also leads to similar test accuracy in the weight tied
setting: 72.5% with 4 blocks per layer, 73.2% with 8 blocks per layer and 72% with 16 blocks
per layer (mean over 2 runs).

2.5.2 Adjoint method

New training strategy. Our results in Prop. 2.9 and 2.10 assume uniform bounds in N on
our residual functions and their derivatives. We also formally proved in the linear setting that
these assumptions hold during the whole learning process if the initial loss is small. A natural
idea to start from a small loss is to consider a pretrained model. In addition, we also want our
pretrained model to verify assumption 2.8 so we consider the following setup. On CIFAR (resp.
ImageNet) we train a ResNet with 4 (resp. 8) blocks in each layer, where weights are tied within
each layer. A first observation is that one can transfer these weights to deeper ResNets without
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Table 2.2: Test accuracy (ResNet)

Before F.T. After F.T

CIFAR-10 95.25± 0.2 % 95.65± 0.1 %

ImageNet 73.1 % 75.1 %
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Figure 2.4: Comparison of the best test errors as a function of depth when using Euler or Heun’s
discretization method with or without the adjoint method.

significantly affecting the test accuracy of the model: it remains above 94.5% on CIFAR-10 and
72% on ImageNet. We then untie the weights of our models and refine them. More precisely, for
CIFAR, we then transfer the weights of our model to a ResNet with 4, 4, 64 and 4 blocks within
each layer and fine-tune it only by refining the third layer, using our adjoint method. We display
in table 2.2 the median of the new test accuracy, over 5 runs for the initial pretraining of the
model. For ImageNet, we transfer the weights to a ResNet with 100 blocks per layer and fine-tune
the whole model with our adjoint method for the residual layers. Results are summarized in
table 2.2. To the best of our knowledge, this is the first time a Neural-ODE like ResNet achieves
a test-accuracy of 75.1% on ImageNet.

Failure in usual settings. In Prop. 2.9 we showed under assumption 2.8, that is if the
residuals are bounded and Lipschitz continuous with constant independent of the depth N , then
the error for computing the activations backward would scale in 1

N as well as the error for the
gradients (Prop. 2.10). First, this results shows that the architecture needs to be deep enough,
because it scales in 1

N : for instance, we fail to train a ResNet-101 (He et al., 2016a) on the
ImageNet dataset using the adjoint method on its third layer (depth 23), as shown in Figure 2.3
(b).

Success at large depth. To further investigate the applicability of the adjoint method for
training deeper ResNets, we train a simple ResNet model on the CIFAR data set. First, the
input is processed by a 5× 5 convolution with 16 out channels, and the image is down-sampled
to a size 10× 10. We then apply a batch norm, a ReLU and iterate relation (2.1) where f is a
pre-activation basic block (He et al., 2016b). We consider the zero residual initialisation: the last
batch norm of each basic block is initialized to zero. We consider different values for the depth
N and notice that in this setup, the deeper our model is, the better it performs in term of test
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accuracy. We then compare the performance of our model using a ResNet (forward rule (2.1)) or
a HeunNet (forward rule (2.8)). We train our networks using either the classical backpropagation
or our corresponding proxys using the adjoint method (formulas (2.6) and (2.9)). We display the
final test accuracy (median over 5 runs) for different values of the depth N in Figure 2.4. The
true backpropagation gives the same curves for the ResNet and the HeunNet. Approximated
gradients, however, lead to a large test error at small depth, but give the same performance at
large depth, hence confirming our results in Prop. 2.10 and 2.12. In addition, at fixed depth, the
accuracy when training a HeunNet with the adjoint method is better (or similar at depths 2, 32
and 64) than for the ResNet with the adjoint method. This is to be linked with the two different
bounds in Prop. 2.10 and 2.12: for the HeunNet, smoothness with depth, which is expected at
large depth, according to the theoretical results for the linear case (Prop. 2.4), implies a faster
convergence to the true gradients for the HeunNet than for the ResNet. We finally validate
this convergence in Figure 2.3 (c): the deeper the architecture, the better the approximation
on the gradients. In addition, the HeunNet approximates the true gradient better than the
ResNet.

Conclusion, limitations and future works

We propose a methodology to analyze how well a ResNet discretizes a Neural ODE. The
positive results predicted by our theory in the linear case are also observed in practice with
real architectures: one can successfully use the adjoint method to train ResNets (or even more
effectively HeunNets) using very deep architectures on CIFAR, or fine-tune them on ImageNet,
without memory cost in the residual layers. However, we also show that for large scale problems
such as ImageNet classification from scratch, the adjoint method fails at usual depths.

Our work provides a theoretical guarantee for the convergence to a Neural ODE in the linear
setting under a small loss initialization. A natural extension would be to study the non-linear
case. In addition, the adjoint method is time consuming, and an improvement would be to
propose a cheaper method than a reverse mode traversal of the architecture for approximating
the activations.
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In Section 2.A we give the proofs of all the propositions, lemmas and the theorem presented in
this work. Section 2.B gives details for the experiments in the chapter. We also give a recap on
ResNet architectures in Section 2.C.

2.A Proofs

2.A.1 Proof of Prop. 2.2

Our proof is inspired by (Demailly, 2016).

Proof. We denote h = 1
N and sn = nh. We define

εn = x(sn+1)− x(sn)− hφΘ(x(sn), sn).

We have that φΘ(x(sn), sn) = ẋ(sn).

Taylor’s formula gives
x(sn + h) = x(sn) + hẋ(sn) +R1(h)

with ∥R1(h)∥ ≤ 1
2h

2∥ẍ∥∞. This implies that

∥εn∥ ≤
1

2
h2∥ẍ∥∞.

The true error we are interested in is the global error en = x(sn)− xn. One has

en+1 − en = x(sn+1)− x(sn) + xn − xn+1 = εn + h(φΘ(x(sn), sn)− φΘ(xn, sn)).

Because φΘ is L-Lipschitz, this gives ∥en+1 − en∥ ≤ ∥εn∥+ hL∥en∥ and hence

∥en+1∥ ≤ (1 + hL)∥en∥+ ∥εn∥.

Because h = 1
N , we have

∥en+1∥ ≤ (1 +
L

N
)∥en∥+

1

2N2
∥ẍ∥∞.

this implies from the discrete Gronwall lemma, since e0 = 0 that

∥en∥ ≤
eL − 1

2NL
∥ẍ∥∞.

Note that we have ẍ = ∂sφΘ + ∂xφΘ[φΘ]. This gives the desired result.

2.A.2 Proof of Prop. 2.4

Proof. Recall that we denote ΠN =
∏N

n=1(Id +
θNn
N ), ΠN

:n = (Id +
θNN
N ) . . . (Id +

θNn+1

N ) and ΠN
n: =

(Id +
θNn−1

N ) . . . (Id +
θN1
N ). We denote ∇N

n = ∇θNn
L. One has

N∇N
n = ΠN⊤

:n (ΠN −B)ΣΠN⊤
n: .

One has as in (Zou et al., 2020a) that

σ2max(Π
N
n:)σ

2
max(Π

N
:n)∥Π−B∥2ΣM ≥ N2∥∇N

n ∥2 ≥ σ2min(Π
N
n:)σ

2
min(Π

N
:n)∥Π−B∥2Σm.

54



where σmax(A) (resp. σmin(A)) denotes the largest (resp. smallest) singular value of A. We first
show that ∀t ∈ R+, ∥θNn (t)∥ < 1

2 . Denote

t∗ = inf{t ∈ R+, ∃n ∈ [N − 1], ∥θNn (t)∥ ≥ 1/2}.

One has that ∀t ∈ [0, t∗], σ2min(Π
N
:n) ≥ (1 − 1

2N )2(N−n) and σ2min(Π
N
n:) ≥ (1 − 1

2N )2(n−1) which
implies that

N2∥∇N
n (t)∥2 ≥ 2(1− 1

2N
)2N−2ℓN (t)m ≥ 2

e
ℓN (t)m.

Similarly one has N2∥∇N
n (t)∥2 ≤ 2eℓN (t)M . To summarize, we have the PL conditions for

t ∈ [0, t∗]:
2

e
mℓN (t) ≤ N2∥∇N

n (t)∥2 ≤ 2eMℓN (t).

As a consequence, one has

dℓN

dt
(t) = −N

N∑

n=1

∥∇N
n (t)∥2 ≤ −2

e
mℓN (t)

and thus ℓN (t) ≤ e− 2
e
mtℓN (0).

We have θNn (t∗) = θNn (0) +N
∫ t∗

0 ∇N
n and ∥∇N

n ∥ ≤
√
2eM
N

√
ℓN so that

∥θNn (t∗)∥ ≤ ∥θNn (0)∥+
√
2eM

∫ t∗

0
e−

1
e
mt
√
ℓN (0)dt <

1

4
+

1

4
< 1/2.

This is absurd by definition of t∗ and thus shows that ∀t ∈ R+, ∥θNn (t)∥ < 1
2 . We also see that

∇N
n is integrable so that θNn (t) admits a limit as t→∞.

We now show our main result. Note that we have the relationship (I+
θNn+1

N )⊤∇n+1 = ∇n(I+
θNn
N )⊤

so that

∇N
n+1 −∇N

n = (I +
θN⊤
n+1

N
)−1(
∇N

n θ
N⊤
n − θN⊤

n+1∇N
n

N
).

Because ∥(I +A)−1∥ ≤ 2 if ∥A∥ ≤ 1
2 this gives ∥∇N

n+1 −∇N
n ∥ ≤ 2

N ∥∇N
n ∥. Integrating we get

∥θNn+1(t)− θNn (t)∥ ≤ ∥θNn+1(0)− θNn (0)∥+ 2

∫ t

0
∥∇N

n ∥.

This gives

∥θNn+1(t)− θNn (t)∥ ≤ O(
1

N
) +

1

N
2

∫ t

0

√
2eMℓN (0)e−

1
e
mtdt = O(

1

N
),

which is the desired result.

2.A.3 Proof of lemma 2.6

Proof. We adapt a variant of the Ascoli–Arzelà theorem (Brezis and Brézis, 2011). We showed in
Prop. 2.4 that there exists C > 0 that only depends on the initialization such that, ∀t ≥ 0, ∀i ∈
[N − 1],

∥θNn+1(t)− θNn (t)∥ ≤ C

N
.
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This implies that

∥θNj (t)− θNi (t)∥ ≤ C |j − i|
N

.

We also have that

∥θNn (t1)− θNn (t2)∥ = ∥N
∫ t2

t1

∇N
n ∥ ≤ C ′|t1 − t2|

with C ′ ≥ 0.

Its follows that ∥ψN (s1, t1)−ψN (s2, t2)∥ ≤ ∥ψN (s1, t1)−ψN (s1, t2)∥+ ∥ψN (s1, t2)−ψN (s2, t2)∥
and thus

(i) ∥ψN (s1, t1)− ψN (s2, t2)∥ ≤ C ′|t1 − t2|+ C|s1 − s2|+
C

N
.

We also have
(ii) ∀N ∈ N, ∥ψN∥∞ ≤

1

2
.

These two properties are essential to prove our lemma. We proceed as follows.

1) First, we denote ((sj , tj))j∈N = (Q ∩ [0, 1])×Q+. Since we have the uniform bound (ii), we
extract using a diagonal extraction procedure a subsequence ψσ(N) such that ∀j ∈ N,

ψσ(N)(sj , tj)→ ψ(sj , tj)

(we denote the limit ψ(sj , tj)).

2) We show the convergence ∀s ∈ [0, 1] and t ∈ R+.

Let ε > 0, s ∈ [0, 1] and t ∈ R+. Since ((sj , tj))j∈N is dense in [0, 1] × R+, there exists k ∈ N
such that |sk − s| < ε and |tk − t| < ε. Let N,M ∈ N.

We have

∥ψσ(N)(s, t) − ψσ(M)(s, t)∥ ≤ ∥ψσ(N)(s, t) − ψσ(N)(sk, tk)∥ + ∥ψσ(N)(sk, tk) − ψσ(M)(sk, tk)∥ +
∥ψσ(M)(sk, tk)− ψσ(M)(s, t)∥
so that

∥ψσ(N)(s, t)− ψσ(M)(s, t)∥ ≤ 2Cε+ 2C ′ε+
C

σ(N)
+

C

σ(M)
+ ∥ψσ(N)(sk, tk)− ψσ(M)(sk, tk)∥.

Since (ψσ(N)(sk, tk))N∈N is a Cauchy sequence, this gives for N,M big enough that

∥ψσ(N)(s)− ψσ(M)(s, t)∥ ≤ (2(C + C ′) + 1)ε

and thus (ψσ(N)(s, t)) is a Cauchy sequence in Rd×d. As such, it converges and one has

ψσ(N)(s, t)→ ψ(s, t).

3) Recall that one has

∥ψσ(N)(s1, t1)− ψσ(N)(s2, t2)∥ ≤ C|s1 − s2|+
C

σ(N)
+ C ′|t1 − t2|

so that letting N →∞ gives

∥ψ(s1, t1)− ψ(s2, t2)∥ ≤ C|s1 − s2|+ C ′|t1 − t2|
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and ψ is Lipschitz continuous.

4) Let us finally show that the convergence is uniform in (s, t). Let s ∈ [0, 1], ε > 0 and δ > 0
such that if |s− u| < δ, ∀t ∈ R+,

∥ψN (s, t)− ψN (u, t)∥ ≤ ε+ C

N

and ∥ψ(s, t)− ψ(u, t)∥ ≤ ε. There exists a finite set of {sj}kj=1 such that

[0, 1] ⊂ ∪kj=1]sj −
δ

2
, sj +

δ

2
[.

For our s, there exists j ∈ {1, . . . , k} such that ∥s− sj∥ ≤ δ.
There also exists t0 ≥ 0 such that if t ≥ t0,

∥ψσ(N)(s, t)− ψσ(N)(s, t0)∥ ≤
√
2eM

∫ t

t0

e−
1
e
mz
√
ℓN (0)dz ≤ ε.

We have:

∥ψσ(N)(s, t0)−ψ(s, t0)∥ ≤ ∥ψσ(N)(s, t0)−ψσ(N)(sj , t0)∥+∥ψσ(N)(sj , t0)−ψ(sj , t0)∥+∥ψ(sj , t0)−
ψ(s, t0)∥
and thus:

∥ψσ(N)(s, t0) − ψ(s, t0)∥ ≤ 2ε + C
σ(N) + maxj∈{1,...,k} ∥ψσ(N)(sj , t0) − ψ(sj , t0)∥ ≤ 4ε for N big

enough.

Finally, ∥ψσ(N)(s, t)−ψ(s, t)∥ ≤ ∥ψσ(N)(s, t)−ψσ(N)(s, t0)∥+∥ψσ(N)(s, t0)−ψ(s, t0)∥+∥ψ(s, t0)−
ψ(s, t)∥ ≤ 6ε

for N big enough, independently of t and s. This concludes the proof.

2.A.4 Proof of lemma 2.7

Proof. We group terms 2 by 2 in the product Π2N . One has (I + θ2N2n
2N )(I +

θ2N2n−1

2N ) = (I + θ̃Nn
N ) with

θ̃Nn = (
θ2N2n + θ2N2n−1

2
+
θ2N2n θ

2N
2n−1

4N
),

So that Π2N = Π̃N where Π̃N is defined as ΠN with θ̃Nn . One has by Prop. 2.4 that

θ̃Nn = θ2N2n +O(
1

N
).

We will show that θ̃Nn = θNn +O( 1
N ).

Let DN
n = ∥θNn − θ̃Nn ∥ and DN = 1

N

∑N
n=1Dn. We have

2DN
n Ḋ

N
n = −N⟨∇N

n − ∇̃N
n , θ

N
n − θ̃Nn ⟩.

In addition, we have

N(∇N
n − ∇̃N

n ) = ΠN⊤
:n (ΠN −B)ΣΠN⊤

n: − Π̃N⊤
:n (Π̃N −B)ΣΠ̃N⊤

n:
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so that

N(∇N
n −∇̃N

n ) = (ΠN
:n−Π̃N

:n)
⊤(ΠN−B)ΣΠN⊤

n: +Π̃N⊤
:n (ΠN−B)Σ(ΠN

n:−Π̃N
n:)

⊤+Π̃N⊤
:n (ΠN−Π̃N )ΣΠ̃N⊤

n: .

Note also that since the Jacobian of (θ1, .., θN )→ ΠN is

J(θ1,..,θN )(H1, ..,HN ) =
1

N

N∑

n=1

ΠN
:nHnΠ

N
n:

and the θNn ’s are such that ∥θNn ∥ ≤ 1
2 , there exists a constantK > 0 such that ∥ΠN

:n−Π̃N
:n∥ ≤ KDN .

Again because ∥θNn ∥ ≤ 1
2 and ∥θ̃Nn ∥ ≤ 1

2 , this gives

N∥∇n − ∇̃n∥ ≤ αKDN
√
ℓN + β∥ΠN − Π̃N∥

for some constants α, β. Finally, we have

ḊN
n ≤

1

2
(αKDN

√
ℓN + β∥ΠN − Π̃N∥)

which gives ∀t
2DN

n (t) ≤ αK
∫ t

0
DN
√
ℓN + β

∫ t

0
∥ΠN − Π̃N∥+O(

1

N
). (2.10)

We now focus on the β term involving ∥ΠN − Π̃N∥. Denote ∆N = ΠN − Π̃N . One has

∆̇N = − 1

N
(

N∑

n=1

ΠN
:nΠ

N⊤
:n (ΠN −B)ΣΠN⊤

n: ΠN
n: + Π̃N

:nΠ̃
N⊤
:n (Π̃N −B)ΣΠ̃N⊤

n: Π̃N
n:),

and equivalently:

∆̇N = − 1
N (
∑N

n=1[Π
N
:nΠ

N⊤
:n − Π̃N

:nΠ̃
N⊤
:n ](ΠN − B)ΣΠN⊤

n: ΠN
n: + Π̃N

:nΠ̃
N⊤
:n (ΠN − B)Σ[ΠN⊤

n: ΠN
n: −

Π̃N⊤
n: Π̃N

n:] + Π̃N
:nΠ̃

N⊤
:n (ΠN − Π̃N )ΣΠ̃N⊤

n: Π̃N
n:).

Note that similarly to ∥ΠN − Π̃N∥ there exist K ′ such that ∥ΠN
:nΠ

N⊤
:n − Π̃N

:nΠ̃
N⊤
:n ∥ ≤ K ′D so that

∥∆̇N +
1

N

N∑

n=1

Π̃N
:nΠ̃

N⊤
:n ∆N Π̃N⊤

n: Π̃N
n:∥ ≤ aK ′D

√
ℓN .

Let us denote by H the operator:

H(∆) =
1

N

N∑

n=1

Π̃N
:nΠ̃

N⊤
:n ∆ΣΠ̃N⊤

n: Π̃N
n:.

Our (PL) conditions precisely write −∆⊤H(∆) ≤ −λ∥∆∥2 for some λ > 0. Let φN = 1
2∥∆N∥2.

One has
dφN

dt
= ⟨∆N , ∆̇N +H(∆N )⟩ − ⟨∆N , H(∆N )⟩

so that
dφN

dt
≤ (aK ′D

√
ℓN )
√
2φN − 2λφN .

Since ∥∆N∥ =
√

2φN we get
d∥∆N∥

dt
=

dφN

dt√
2φN

.
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We finally have
d∥∆N∥

dt
≤ aK ′DN

√
ℓN − λ∥∆N∥.

Integrating, we get

∥∆N (t)∥ ≤ −λ
∫ t

0
∥∆N∥+

∫ t

0
aK ′DN

√
lN +O(

1

N
)

and then ∫ t

0
∥∆N∥ ≤ 1

λ

∫ t

0
aK ′DN

√
lN +O(

1

N
).

Plugging this into (2.10) leads to

0 ≤ 2DN
n (t) ≤ αK

∫ t

0
DN
√
ℓN +

β

λ

∫ t

0
aK ′DN

√
ℓN +O(

1

N
).

Let n(t) be such that DN
n(t)(t) = maxi∈[1,N ]D

N
i (t). We have

0 ≤ 2DN
n(t)(t) ≤ µ

∫ t

0
DN

n(τ)(τ)
√
ℓN (τ)dτ +O(

1

N
)

for some constant µ > 0. And since
√
ℓN is integrable, we get by Gronwall’s inequality that

DN
n = O( 1

N ) ∀n ∈ [1, N ]. We showed:

θ2N2n = θNn +O(
1

N
).

2.A.5 Proof of Th. 2.5

We first prove the following lemma 2.13 before proving Th. 2.5.

Lemma 2.13. Under the assumptions of Th. 2.5, let σ be such that ψσ(N) → ψσ uniformly (in
∥.∥∞ w.r.t (s, t)). Then one has Πσ(N)(t) → Π(t) uniformly (in t) where Π(t) maps x0 to the
solution at time 1 of the Neural ODE dx

ds = ψσ(s, t)x(s) with initial condition x0.

Proof. Consider for x0 ∈ Rd with ∥x0∥ = 1 the discrete scheme

xn+1 = xn +
1

σ(N)
θσ(N)
n (t)xn,

the ODE
dx

ds
= ψσ(s, t)x(s),

and the Euler scheme with time step 1
σ(N) for its discretization

yn+1 = yn +
1

σ(N)
ψσ(

n

σ(N)
, t)yn.

We know by Prop. 2.2, since x0 has unit norm that

∥x( n

σ(N)
)− yn∥ ≤

e
1
2 − 1

σ(N)
∥∂sψσ(., t) + ψ2

σ(., t)∥K×[0,1]
∞
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where K is a compact that contains all the trajectory starting from any unit norm initial condition.
Since ∀t ∈ R+, ∥∂sψσ(s, t)∥ ≤ C and ∥ψσ(s, t)

2∥ ≤ 1
2 , there exists C̃ > 0 and independent of t

such that

∥x( n

σ(N)
)− yn∥ ≤

C̃

σ(N)

Now, let en = yn − xn. We have

en+1 = en(1 +
1

σ(N)
ψσ(

n

σ(N)
, t)) +

1

σ(N)
(ψσ(

n

σ(N)
, t)− ψσ(N)(

n

σ(N)
, t))xn.

Since ∥θNn ∥ ≤ 1
2 and x0 has unit norm, there exists M > 0 independent of x0 such that, ∀n and

N , ∥xn∥ ≤M . Thus

∥en+1∥ ≤ ∥en∥(1 +
1

2σ(N)
) +

1

σ(N)
sup

(s,t)∈[0,1]×R+

∥ψσ(s, t)− ψσ(N)(s, t)∥M.

The fact that sup(s,t)∈[0,1]×R+
∥ψσ(s, t)− ψσ(N)(s, t)∥ → 0 (uniform convergence of ψσ(N) to ψσ)

along with the discrete Gronwall’s lemma leads to ∥en∥ = o(1) independent of t and x0. More
precisely,

sup
t∈R+,x0∈Rd,∥x0∥=1

∥Πσ(N)(t)x0 −Π(t)x0∥ → 0

as N →∞. We obtain the uniform convergence with t.

We can now prove our Th. 2.5.

Proof. Consider (ψσ(N))N a sub-sequence of (ψN )N as in lemma 2.6 that converges to some ψσ.

1) We first prove the uniqueness of the limit.

We want to show that ψσ does not depend on σ. This will imply the uniqueness of any
accumulation point of the relatively compact sequence (ψN )N and thus its convergence.

We have ∀s ∈ [0, 1],

∂tψσ(N)(s, t) = −Πσ(N)⊤
:⌊σ(N)s⌋(t)(Π

σ(N)(t)−B)Π
σ(N)⊤
⌊σ(N)s⌋:(t).

As N →∞, we have thanks to lemma 2.13 that the right hand term converges uniformly to

−Π⊤
:s(t)(Π(t)−B)Π⊤

s:(t)

where Π maps x0 to the solution at time 1 of the Neural ODE dx
ds = ψσ(s, t)x(s) with initial

condition x0, Π:s(t) maps x0 to the solution at time s of the Neural ODE dx
ds = ψσ(s, t)x(s)

with initial condition x0 and Πs:(t) maps x0 to the solution at time 1− s of the Neural ODE
dx
ds = ψσ(s, t)x(s) with initial condition x0.

This uniform convergence makes it possible to consider the limit ODE as N →∞:

∂tψσ(., t) = F (ψσ(., t)), ψσ(., 0) = 0d×d (2.11)

where ∀s ∈ [0, 1],
F (ψσ(s, t)) = −Π⊤

:s(t)(Π(t)−B)Π⊤
s:(t).
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We now show that F is Lipschitz continuous which will guarantee uniqueness through the
Picard–Lindelöf theorem. Recall that we have ∀(s, t) ∈ [0, 1]× R+:

∥ψσ(s, t)∥ ≤
1

2
.

Let ψ1, ψ2 with ∥ψ1(s, t)∥ ≤ 1
2 and ∥ψ2(s, t)∥ ≤ 1

2 and Π1(t), Π2(t) the corresponding flows.

Let x0 in Rd with unit norm, x1 (resp. x2) be the solutions of dx
ds = ψ1(s, t)x(s) (resp. dx

ds =
ψ2(s, t)x(s)) with initial condition x0. Let y = x1 − x2.
One has Π1(t)x0 = x1(1) and Π2(t)x0 = x2(1). One has ẏ = ψ1x1 − ψ2x2 = ψ2y + (ψ1 − ψ2)x1.
Hence, since y(0) = 0, ∥y(s)∥ ≤

∫ s
0 ∥ψ2∥∥y∥+ ∥ψ1 − ψ2∥∞|∥x1∥∞, we have

∥y(s)∥ ≤ 1

2
∥y(s)∥+ ∥ψ1 − ψ2∥∞.∥Π1(t)∥

and since ∀t ∈ R+, ∥Π1(t)∥ ≤ 2e we get

∥Π1(t)x0 −Π2(t)x0∥ = ∥y(1)∥ ≤ α∥ψ1 − ψ2∥∞

for some α > 0. The same arguments go for Π:s and Πs:.

Since we only consider maps ψσ such that ∥ψσ(s, t)∥ ≤ 1
2 , this implies that the product is also

Lipschitz and thus F is Lipschitz. This guarantees the uniqueness of a solution ψ to the Cauchy
problem and we have that ψN → ψ uniformly.

2) We now turn to the convergence speed.

We have ∥ψ2N − ψN∥ ≤ D
N for some D > 0 thanks to lemma 2.7. For k ∈ N, we have that

∥ψ2kN − ψN∥ ≤
k−1∑

i=0

∥ψ2i+1N − ψ2iN∥ ≤
D

N

k−1∑

i=0

1

2i
≤ 2D

N
.

Letting k →∞ finally gives ∥ψ − ψN∥ ≤ 2D
N .

2.A.6 Proof of Prop. 2.9

Proof. We denote rn = x̃n − xn.

One has rN = 0 and

rn = x̃n+1 −
1

N
f(x̃n+1, θ

N
n )− xn+1 +

1

N
f(xn, θ

N
n ),

that is
rn = rn+1 +

1

N
(f(xn+1 −

1

N
f(xn, θ

N
n ), θNn )− f(x̃n+1, θ

N
n )).

Since

f(xn+1 −
1

N
f(xn, θ

N
n ), θNn ) = f(xn+1, θ

N
n )− 1

N
∂xf(xn+1, θ

N
n )[f(xn, θ

N
n )] +O(

1

N2
)

this gives

rn = rn+1 +
1

N
(f(xn+1, θ

N
n )− f(x̃n+1, θ

N
n ))− 1

N2
∂xf(xn+1, θ

N
n )[f(xn, θ

N
n )] +O(

1

N3
).
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Denoting
KN = sup

n∈[N−1]
∥∂xf(., θNn )∥K∞∥f(., θNn )∥K∞,

we have the following inequality:

∥rn∥ ≤ (1 +
Lf

N
)∥rn+1∥+

1

N2
KN +O(

1

N3
)

and since rN = 0, the discrete Gronwall lemma leads to ∥rn∥ ≤ e
Lf−1
LfN

KN +O( 1
N2 ). In addition,

one has KN ≤ LfCf so that

∥rn∥ ≤
eLf − 1

N
Cf +O(

1

N2
).

2.A.7 Proof of Prop. 2.10

Proof. 1) We first control the error made in the gradient with respect to activations.

Denote
gn = ∇x̃nL−∇xnL.

One has using formulas (2.3) and (2.7) that

gn = gn+1 +
1

N
(∂xf(x̃n, θ

N
n )− ∂xf(xn, θNn ))⊤∇x̃n+1L+

1

N
∂xf(xn, θ

N
n )⊤gn+1.

Since
∥∂xf(xn, θNn )⊤gn+1∥ ≤ Lf∥gn+1∥

and because
∥(∂xf(x̃n, θNn )− ∂xf(xn, θNn ))⊤∇x̃n+1L∥ ≤ Ldf∥x̃n − xn∥g,

where g is a bound on ∇x̃n+1L, we conclude by using Prop. 2.9 and the discrete Gronwall’s
lemma.

2) We can now control the gradients with respect to the parameters θNn ’s.

Denote
tn = ∇̃θNn

L−∇θNn
L.

We have
Ntn = −[∂θf(xn, θNn )− ∂θf(x̃n, θNn )]⊤∇xnL− [∂θf(x̃n, θ

N
n )]⊤gn.

Hence N∥tn∥ ≤ Lθ∥xn − x̃n∥g + Cθ∥gn∥ where g is a bound on ∇xnL.

Using our bound on ∥gn∥ and Prop. 2.9 we get

N∥tn∥ ≤
Lθ(e

Lf − 1)gCf

N
+

(eLf − 1)(eLf − 1)CfLdfgCθ

LfN
+O(

1

N2
)

and thus
tn = O(

1

N2
).
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2.A.8 Proof of Prop. 2.11

In the following, we let for short fn(x) = f(x, θNn ), and we define

φn(x) =
1

2

(
fn(x) + fn+1(x+

1

N
fn(x))

)
and ψn(x) =

1

2

(
fn+1(x) + fn(x−

1

N
fn+1(x))

)

(2.12)

so that Heun’s forward and backward equations are

xn+1 = xn +
1

N
φn(xn) and x̃n = x̃n+1 −

1

N
ψn(x̃n+1).

We have the following lemma that quantifies the reconstruction error over one iteration:

Lemma 2.14. For x ∈ R, we have as N goes to infinity

ψn(x+
1

N
φn(x))− φn(x) =

1

4N
(Jn+1(x)− Jn(x)) [fn+1(x)− fn(x)] +O(

1

N2
),

where Jn = ∂xfn(x) is the Jacobian of fn.

Proof. As N goes to infinity, we have the following expansions of (2.12):

φn(x) =
1

2
(fn(x) + fn+1(x)) +

1

2N
Jn+1(x)[fn(x)] +O(

1

N2
),

ψn(x) =
1

2
(fn(x) + fn+1(x))−

1

2N
Jn(x)[fn+1(x)] +O(

1

N2
).

As a consequence, we have

ψn(x+
1

N
φn(x)) =

1

2
(fn(x) + fn+1(x))−

1

2N
Jn(x)[fn+1(x)]

+
1

4N
(Jn(x)[fn(x) + fn+1(x)] + Jn+1(x)[fn(x) + fn+1(x)]) +O(

1

N2
).

Putting everything together, we find that the zero-th order in ψn(x+ 1
Nφn(x))− φn(x) cancels,

and that the first order simplifies to 1
4N (Jn+1(x)− Jn(x)) [fn+1(x)− fn(x)].

We now turn the the proof of the main proposition:

Proof. We let rn = x̃n − xn the reconstruction error. We have rN = 0, and we find

rn = x̃n − xn (2.13)

= x̃n+1 −
1

N
ψn(x̃n+1)− xn+1 +

1

N
φn(xn) (2.14)

= rn+1 −
1

N
(ψn(x̃n+1)− ψn(xn+1))−

1

N
(ψn(xn+1)− φn(xn)) . (2.15)

Using the triangle inequality, and the L′
f−Lispchitz continuity of ψn, we get

∥rn∥ ≤ (1 +
L′
f

N
)∥rn+1∥+

1

N
∥ψn(xn+1)− φn(xn)∥.

The last term is controlled with the previous Lemma 2.14:
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∥ψn(xn+1)− φn(xn)∥ ≤
1

4N
∥ (Jn+1(xn)− Jn(xn)) [fn+1(xn)− fn(xn)]∥+O(

1

N2
) (2.16)

≤
C ′
f∆

N
θ

N
+O(

1

N2
). (2.17)

We therefore get the recursion

∥rn∥ ≤ (1 +
L′
f

N
)∥rn+1∥+

C ′
f∆

N
θ

N2
+O(

1

N3
).

Unrolling the recursion gives,

∥rn∥ ≤
(eL

′
f − 1)C ′

f

L′
fN

∆N
θ +O(

1

N2
).

2.A.9 Proof of Prop. 2.12

Proof. 1) We first control the error made in the gradient with respect to activations. We have
the following recursions:

∇xnL = (I +
1

N
∂xφn(xn+1))

⊤∇xn+1L and ∇x̃nL = (I +
1

N
∂xφn(x̃n+1))

⊤∇x̃n+1L

Letting r′n = ∇xnL−∇x̃nL, we have

r′n = r′n+1 +
1

N
∂xφn(xn+1)

⊤r′n+1 +
1

N
(∂xφn(xn+1)− ∂xφn(x̃n+1))

⊤∇x̃n+1L

Therefore, using the triangle inequality, and letting g a bound on the norm of the gradients
∇x̃n+1L and ∆ a Lipschitz constant of ∂xφn, we find

∥r′n∥ ≤ (1 +
L′
f

N
)∥r′n+1∥+

1

N
g∆∥xn+1 − x̃n+1∥

The last term is controled with the previous proposition, and we find

∥r′n∥ ≤ (1 +
L′
f

N
)∥r′n+1∥+

(eL
′
f − 1)C ′

fg∆

L′
fN

2
∆N

θ +O(
1

N3
),

which gives by unrolling:

∥r′n∥ ≤
(eL

′
f − 1)2C ′

fg∆

L′2
f N

∆N
θ +O(

1

N2
).

2) We can now control the gradients with respect to parameters. Since Heun’s method involves
parameters θNn both for the computation of xn and xn+1, the gradient formula is slightly more
complicated than for the classical ResNet. It is the sum of two terms, the first one ∇1

θNn
L

corresponding to iteration n and the second one ∇2
θNn
L corresponding to iteration n− 1.
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We have

∇1
θNn
L =

1

2N

(
∂θf(xn, θ

N
n ) +

1

N
∂xf(yn, θ

N
n+1)∂θf(xn, θ

N
n )

)⊤
∇xnL

and
∇2

θNn
L =

1

2N

(
∂θf(yn−1, θ

N
n−1)

)⊤
(I +

1

N
∂xf(xn−1, θ

N
n−1))

⊤∇xn−1L.

The gradient ∇θNn
L is finally

∇θNn
L = ∇1

θNn
L+∇2

θNn
L.

Overall, these equations map the activations xn and xn−1, and the gradients ∇xn−1L and ∇xnL
to the gradient ∇θNn

, which we rewrite as

∇θNn
L = Ψ(xn, xn−1,∇xnL,∇xn−1L),

where the function Ψ is explicitly defined by the above equations. With the memory-free backward
pass, the gradient is rather estimated as

∇̃θNn
L = Ψ(x̃n, x̃n−1,∇x̃nL,∇x̃n−1L).

The function Ψ is Lispchitz-continuous since all functions involved in its composition are Lipschitz-
continuous and the activations belong to a compact set, and its Lipschitz constant scales as 1

N .
We write its Lipschitz constant as LΨ

N , and we get:

∥∇θNn
L− ∇̃θNn

L∥ = ∥Ψ(xn, xn−1,∇xnL,∇xn−1L)−Ψ(x̃n, x̃n−1,∇x̃nL,∇x̃n−1L)∥ (2.18)

≤ LΨ

N
(∥xn − x̃n∥+ ∥xn−1 − x̃n−1∥+ ∥∇xnL−∇x̃nL∥+ ∥∇xn−1L−∇x̃n−1L∥).

(2.19)

Using the previous propositions, we get:

∥∇θNn
L− ∇̃θNn

L∥ = O(
∆N

θ

N2
+

1

N3
).

2.B Experimental details

In all our experiments, we use Nvidia Tesla V100 GPUs.

2.B.1 CIFAR

For our experiments on CIFAR-10 (training from scratch), we used a batch-size of 128 and we
employed SGD with a momentum of 0.9. The training was done over 200 epochs. The initial
learning rate was 0.1 and we used a cosine learning rate scheduler. A constant weight decay was
set to 5× 10−4. Standard inputs preprocessing as proposed in Pytorch (Paszke et al., 2017) was
performed.

For our finetuning experiment on CIFAR-10, we used a batch-size of 128 and we employed SGD
with a momentum of 0.9. The training was done over 5 epochs. The learning rate was kept
constant to 10−3. A constant weight decay was set to 5× 10−4. Standard inputs preprocessing
as proposed in Pytorch was also performed.
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For our experiment with our simple ResNet model that processes the input by a 5×5 convolution
with 16 out channels, we used a batch-size of 256 and we employed SGD with a momentum of
0.9. The training was done over 90 epochs. The learning rate was set to 10−1 and was decayed
by a factor 10 every 30 epochs. A constant weight decay was set to 5× 10−4. Standard inputs
preprocessing as proposed in Pytorch was also performed.

2.B.2 ImageNet

For our experiments on ImageNet (training from scratch), we used a batch-size of 256 and
we employed SGD with a momentum of 0.9. The training was done over 100 epochs. The
initial learning rate was 0.1 and was decayed by a factor 10 every 30 epochs. A constant weight
decay was set to 10−4. Standard inputs preprocessing as proposed in Pytorch was performed:
normalization, random croping of size 224× 224 pixels, random horizontal flip.

For our finetuning experiment on ImageNet, we used a batch-size of 256 and we employed SGD
with a momentum of 0.9. The training was done over 3 epochs. The learning rate was kept
constant to 5× 10−4. A constant weight decay was set to 10−4. Standard inputs preprocessing
as proposed in Pytorch was performed: normalization, random croping of size 224× 224 pixels,
random horizontal flip.

2.C Architecture details

In computer vision, the ResNet as presented in (He et al., 2016a) first applies non residual
transformations to the input image: a feature extension convolution that goes to 3 channels to
64, a batch norm, a non-linearity (ReLU) and optionally a maxpooling.

It is then made of 4 layers (each layer is a series of residual blocks) of various depth, all of which
perform residual connections. Each of the 4 layers works at different scales (with an input with a
different number of channels): typically 64, 128, 256 and 512 respectively. There are two types
of residual blocks: Basic Blocks and Bottlenecks. Both are made of a successions of convolutions
conv, batch normalizations bn (Ioffe and Szegedy, 2015) and ReLU non-linearity σ. For example,
a Basic Block iterates (in a pre-activation (He et al., 2016b) fashion):

x→ x+ bn(conv(σ(bn(conv(σ(x)))))).

Finally, there is a classification module: average pooling followed by a fully connected layer.
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3
Implicit regularization of deep residual net-
works towards neural ODEs

In this chapter, we take a further step towards establishing a solid mathematical link between resid-
ual neural networks and neural ordinary differential equations (ODEs), by proving an implicit regu-
larization of deep residual networks towards neural ODEs. Our result holds for nonlinear networks
trained with gradient flow. We prove that if the network is initialized as a discretization of a neural
ODE, then such a discretization holds throughout training. Our results are valid for a finite train-
ing time, and also as the training time tends to infinity provided that the network satisfies a Polyak-
Łojasiewicz condition. Importantly, this condition holds for a family of residual networks where
the residuals are two-layer perceptrons with an overparameterization in width that is only linear,
and implies the convergence of the gradient flow to a global minimum of the loss. Our results are
illustrated by numerical experiments.
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Specific notations. In this chapter, we use the notation hk (resp. H(s)) instead of xn (resp.
X(s)) to denote the residual network’s activations (resp. neural ODE trajectories). Additionally,
L represents the network’s depth, in contrast to N as used in Chapter 2 and the Introduction.
The parameters are denoted by Z instead of Θ.

3.1 Introduction

Residual networks are a successful family of deep learning models popularized by breakthrough
results in computer vision (He et al., 2016a). The key idea of residual networks, namely the
presence of skip connections, is now ubiquitous in deep learning, and can be found, for example,
in Transformer models (Vaswani et al., 2017). The main advantage of skip connections is to allow
successful training with depth of the order of a thousand layers, in contrast to vanilla neural
networks, leading to significant performance improvements (e.g., Wang et al., 2022). This has
motivated research on the properties of residual networks in the limit where the depth tends to
infinity. One of the main explored directions is the neural ordinary differential equation (ODE)
limit (Chen et al., 2018).

To present the neural ODE principle, we first introduce the mathematical formalism of deep
residual networks. We consider a single model throughout the chapter to simplify the exposition,
but most of our results apply to more general models, as will be discussed later. We consider the
formulation

hk+1 = hk +
1

L
√
m
Vk+1σ

( 1√
q
Wk+1hk

)
, k ∈ {0, . . . , L− 1}, (3.1)

where L is the depth of the network, hk ∈ Rq is the output of the k-th hidden layer, Vk ∈ Rq×m,
Wk ∈ Rm×q are the weights of the k-th layer, and σ is an activation function applied element-wise.
Scaling with the square root of the width is classical, although it often appears as an equivalent
condition on the variance at initialization (Glorot and Bengio, 2010; LeCun et al., 2012; He et al.,
2015b). We make the scaling factors explicit to have weights of magnitude O(1) independently
of the width and the depth. The 1/L scaling factor is less common, but it is necessary for the
correspondence with neural ODEs to hold. More precisely, if there exist Lipschitz continuous
functions V and W such that Vk = V(k/L) and Wk =W(k/L), then the residual network (3.1)
converges, as L→∞, to the ODE

dH

ds
(s) =

1√
m
V(s)σ

( 1√
q
W(s)H(s)

)
, s ∈ [0, 1], (3.2)

where s is the continuous-depth version of the layer index. It is important to note that this
correspondence holds for fixed limiting functions V andW . This is especially true at initialization,
for example by setting the Vk to zero and the Wk to weight-tied Gaussian matrices. In this case,
the initial residual network is trivially equal to the neural ODE dH

ds (s) = 0. Of course, more
sophisticated initialization choices are possible, as shown, e.g., in Marion et al. (2022) and Sander
et al. (2022b). However, regardless of an ODE structure at initialization, a more challenging
question is that of the structure of the network after training. Since the weights are updated
during training, there is no a priori guarantee that an ODE limit still holds after training, even
if it does at initialization.

The question of a possible ODE structure for the trained network is not a mere technical one. In
fact, it is important for at least three reasons. First, it gives a precise answer to the question
of the connection between (trained) residual networks and neural ODEs, providing more solid
ground to a common statement in the community that both can coincide in the large-depth
limit (see, e.g., Haber and Ruthotto, 2017a; E et al., 2019; Dong et al., 2020; Massaroli et al.,
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2020; Kidger, 2022). Second, it opens exciting perspectives for understanding residual networks.
Indeed, if trained residual networks are discretizations of neural ODEs, then it is possible to
apply results from neural ODEs to the large family of residual networks. In particular, from a
theoretical point of view, the approximation capabilities of neural ODEs are well understood
(Teshima et al., 2020; Zhang et al., 2020a) and it is relatively easy to obtain generalization
bounds for these models (see Hanson and Raginsky, 2022 and Chapter Marion, 2023). From a
practical standpoint, advantages of neural ODEs include memory-efficient training (Chen et al.,
2018; Sander et al., 2022b) and weight compression (Queiruga et al., 2021). This is important
because in practice memory is a bottleneck for training residual networks (Gomez et al., 2017).
Finally, our analysis is a first step towards understanding the implicit regularization (Neyshabur
et al., 2014; Vardi, 2023) of gradient descent for deep residual networks, that is, characterizing
the properties of the trained network among all minimizers of the empirical risk.

Throughout the document, it is assumed that the network is trained with gradient flow, which is
a continuous analog of gradient descent. The parameters Vk are updated according to an ODE
of the form dVk

dt (t) = −L ∂ℓ
∂Vk

(t) for t ≥ 0, where ℓ is an empirical risk (the exact mathematical
context and assumptions are detailed in Section 3.3), and similarly for Wk. The scaling factor L
is the counterpart of the factor 1/L in (3.1), and prevents exploding or vanishing gradients as L
tends to infinity. Note that the gradient flow is defined with respect to a time index t different
from the layer index s.

Contributions. Our first main contribution (Section 3.4.1) is to show that a neural ODE
limit holds after training up to time t, i.e., there exists a function V(s, t) such that the residual
network converges, as L tends to infinity, to the ODE

dH

ds
(s) =

1√
m
V(s, t)σ

( 1√
q
W(s, t)H(s)

)
, s ∈ [0, 1].

This large-depth limit holds for any finite training time t ⩾ 0. However, the convergence of
the optimization algorithm as t tends to infinity, which we refer to as the long-time limit to
distinguish it from the large-depth limit L→∞, is not guaranteed without further assumptions,
due to the non-convexity of the optimization problem. We attack the question (Section 3.4.2)
when the width is large enough by proving a Polyak-Łojasiewicz (PL) condition, which is now
state of the art in analyzing the properties of optimization algorithms for deep neural networks
(Liu et al., 2022a). The main assumption for our PL condition to hold is that the width m
of the hidden layers should be greater than some constant times the number of data n. As a
second main contribution, we show that the PL condition yields the long-time convergence of
the gradient flow for residual networks with linear overparameterization. Finally, we prove the
convergence with high probability in the long-time limit, namely the existence of functions V∞
and W∞ such that the discrete trajectory defined by the trained residual network (3.1) converges
as both L and t tend to infinity to the solution of the neural ODE (3.2) with V = V∞ and
W =W∞. In addition, our approach points out that this limiting ODE interpolates the training
data. Finally, our results are illustrated by numerical experiments (Section 3.5).

Organization of the chapter. Section 3.2 presents some related work. We then move on
to detail the mathematical context and notation in Section 3.3 before giving our main results
in Section 3.4. Section 3.5 is devoted to numerical experiments. We conclude the main part of
the chapter in Section 3.6. Then, in Section 3.A, we prove results on a more general residual
network model that encompasses the one presented so far. These results are then instantiated in
the specific case of the residual network (3.3) in Section 3.B, thus proving the results of the main
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part of the chapter. Section 3.C contains some lemmas that are useful for the proofs. We present
in Section 3.D a counter-example showing that a residual network with the ReLU activation can
move away from the neural ODE structure during training. Finally, Section 3.E presents some
experimental details.

3.2 Related work

Deep residual networks and neural ODEs. Several works study the large-depth convergence
of residual networks to differential equations, but without considering the training dynamics,
such as Cohen et al. (2021); Thorpe and van Gennip (2022); Hayou (2023); Marion et al. (2022).
Closer to our setting, Cont et al. (2022) and Sander et al. (2022b) analyze the dynamics of
gradient descent for deep residual networks, as we do, but with significant differences. Cont et al.
(2022) consider a 1/

√
L scaling factor in front of the residual branch, resulting in a limit that is

not a neural ODE. In addition, only W is trained. Furthermore, to obtain convergence in the
long-time limit, it is assumed that the data points are nearly orthogonal. Sander et al. (2022b)
prove the existence of an ODE limit for trained residual networks, but in the simplified case of a
linear activation and under a more restricted setting.

Long-time convergence of wide residual networks. Polyak-Łojasiewicz conditions are a
modern tool to prove long-time convergence of overparameterized neural networks (Liu et al.,
2022a). These conditions are a relaxation of convexity, and mean that the gradients of the loss
with respect to the parameters cannot be small when the loss is large. They have been applied
to residual networks with both linear (Bartlett et al., 2018; Wu et al., 2019; Zou et al., 2020b)
and nonlinear activations (Allen-Zhu et al., 2019; Frei et al., 2019; Barboni et al., 2022; Cont
et al., 2022; MacDonald et al., 2022). Building on the proof technique of Nguyen and Mondelli
(2020) for non-residual networks, we need only a linear overparameterization to prove our PL
condition, i.e., we require m = Ω(n). This compares favorably with results requiring polynomial
overparameterization (Allen-Zhu et al., 2019; Barboni et al., 2022) or assumptions on the data,
either a margin condition (Frei et al., 2019) or a sample size smaller than the dimension of the
data space (Cont et al., 2022; MacDonald et al., 2022).

Implicit regularization. This chapter can be related to a line of work on the implicit
regularization of gradient-based algorithms for residual networks (Neyshabur et al., 2014). We
show that the optimization algorithm does not just converge to any residual network that
minimizes the empirical risk, but rather to the discretization of a neural ODE. Note that most
implicit regularization results state that the optimization algorithm converges to an interpolator
that minimizes some complexity measure, which can be a margin (Lyu and Li, 2020), a norm
(Boursier et al., 2022), or a matrix rank (Li et al., 2021). Thus, an interesting next step is
to understand if the neural ODE found by gradient flow actually minimizes some complexity
measure, and to characterize its generalization properties.

3.3 Definitions and notation

This section is devoted to specifying the setup outlined in Section 3.1.
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Residual network. A (scaled) residual network of depth L ∈ N∗ is defined by

hL0 = ALx

hLk+1 = hLk +
1

L
√
m
V L
k+1σ

( 1√
q
WL

k+1h
L
k

)
, k ∈ {0, . . . , L− 1},

FL(x) = BLhLL.

(3.3)

To allow the hidden layers hLk ∈ Rq to have a different dimension than the input x ∈ Rd, we
first map x to hL0 with a weight matrix AL ∈ Rq×d. We assume that the hidden layers belong
to a higher dimensional space than the input and output, i.e., q ⩾ max(d, d′). The residual
transformations are two-layer perceptrons parameterized by the weight matrices V L

k ∈ Rq×m and
WL

k ∈ Rm×q. This is standard in the literature (e.g., He et al., 2016b; Chen et al., 2018; Teh
et al., 2019; Barboni et al., 2022). The last weight matrix BL ∈ Rd′×q maps the last hidden layer
to the output FL(x) in Rd′ . Also, σ : R→ R is an element-wise activation function assumed to
be C2, non-constant, Lipschitz continuous, bounded, and such that σ(0) = 0. The convenient
shorthand ZL

k = (V L
k ,W

L
k ) is occasionally used, and we denote ∥ZL

k ∥F the sum of the Frobenius
norms ∥V L

k ∥F + ∥WL
k ∥F .

Data and loss. The data is a sample of n pairs (xi, yi)1≤i≤n ∈ (X × Y)n where X × Y is a
compact set of Rd × Rd′ . The empirical risk is the mean squared error ℓL = 1

n

∑n
i=1 ∥FL(xi)−

yi∥2.

Initialization. We initialize AL = (IRd×d , 0R(q−d)×d) as the identity matrix in Rd×d concatenated
row-wise with the zero matrix in R(q−d)×d, to act as a simple projection of the input onto the higher
dimensional space Rq, and similarly BL = (0Rd′×(q−d′) , IRd′×d′ ). The weights V L

k are initialized
to zero and the WL

k as weight-tied standard Gaussian matrices, i.e., for all k ∈ {1, . . . , L},
WL

k =W ∼ N (0, 1)⊗(m×q). Initializing outer matrices to zero is standard practice (Zhang et al.,
2019a), while taking weight-tied matrices instead of i.i.d. ones is less common. We show in
Section 3.5 that it is still possible to learn with this initialization scheme on real world data. As
explained in Section 3.4.3, other initialization choices are possible, provided they correspond to
the discretization of a Lipschitz continuous function, but we focus on this one in the main text
for simplicity.

Training algorithm. Gradient flow is the limit of gradient descent as the learning rate tends
to zero. The parameters are set at time t = 0 by the initialization, and then evolve according to
the ODE

dAL

dt
(t) = − ∂ℓ

L

∂AL
(t),

dZL
k

dt
(t) = −L ∂ℓ

L

∂ZL
k

(t),
dBL

dt
(t) = − ∂ℓL

∂BL
(t), t ⩾ 0, (3.4)

for k ∈ {1, . . . , L}. In the following, the dependence in t is made explicit when necessary, e.g.,
we write hLk (t) instead of hLk , and FL(x; t) instead of FL(x).

It turns out that, without further assumptions, the gradient flow can diverge in finite time. This
is because the dynamics are not (globally) Lipschitz continuous, breaking the conditions of the
Picard-Lindelöf theorem (see Lemma 3.19) for existence and uniqueness of ODE solutions. A
common practice (Goodfellow et al., 2016a, Section 10.11.1) is to consider instead a clipped
gradient flow

dAL

dt
(t) = π

(
− ∂ℓL

∂AL
(t)
)
,

dZL
k

dt
(t) = π

(
− L ∂ℓ

L

∂ZL
k

(t)
)
,

dBL

dt
(t) = π

(
− ∂ℓL

∂BL
(t)
)
, (3.5)
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where π is a generic notation for a bounded Lipschitz continuous operator. For example, clipping
each coordinate of the gradient at some C > 0 amounts to taking π as the projection on the ball
centered at 0 of radius C for the ℓ∞ norm. Clipping ensures that the dynamics are well defined,
as shown in the next proposition that is a consequence of the Picard-Lindelöf theorem.

Proposition 3.1. The (clipped) gradient flow (3.5) has a unique solution for all t ⩾ 0.

Proof. See Section 3.B.1.

In Section 3.4.2, we make additional assumptions to prove the long-time convergence of the
gradient flow. We then prove that these assumptions ensure that the dynamics of the gradient
flow (3.4) are well defined, eliminating the need for clipping.

Neural ODE. The neural ODE corresponding to the residual network (3.3) is defined by

H(0) = Ax

dH

ds
(s) =

1√
m
V(s)σ

( 1√
q
W(s)H(s)

)
, s ∈ [0, 1],

F (x) = BH(1),

(3.6)

where x ∈ Rd is the input, H ∈ Rq is the variable of the ODE, V : [0, 1] → Rq×m and
W : [0, 1] → Rm×q are Lipschitz continuous functions, A ∈ Rq×d and B ∈ Rd′×q are matrices,
and the output is F (x) ∈ Rd′ . The following proposition shows that the neural ODE is well
defined. In addition, its output is close to the residual network (3.3) provided the weights are
discretizations of V and W.

Proposition 3.2. The neural ODE (3.6) has a unique solution H : [0, 1] → Rq. Consider,
moreover, the residual network (3.3) with AL = A, V L

k = V(k/L) and WL
k = W(k/L) for

k ∈ {1, . . . , L}, and BL = B. Then there exists C > 0 such that, for all L ∈ N∗, supx∈X ∥F (x)−
FL(x)∥ ≤ C

L .

Proof. See Section 3.B.2.

Clearly, our choices of V L
k and WL

k at initialization are discretizations of the Lipschitz continuous
(in fact, constant) functions V(s) ≡ 0 and W(s) ≡ W ∼ N (0, 1)⊗(m×q). Thus, Proposition 3.2
holds at initialization, and the residual network is equivalent to the trivial ODE dH

ds (s) = 0. The
next section shows that after training we obtain non-trivial dynamics, which still discretize neural
ODEs.

3.4 Large-depth limit of residual networks

We study the large-depth limit of trained residual networks in two settings. In Section 3.4.1,
we consider the case of a finite training time. We move in Section 3.4.2 to the case where the
training time tends to infinity, which is tractable under a Polyak-Łojasiewicz condition.

3.4.1 Clipped gradient flow and finite training time

We first consider the case where the neural network is trained with clipped gradient flow (3.5) on
some training time interval [0, T ], T > 0. This allows us to prove large-depth convergence to a
neural ODE without further assumptions. We emphasize that stopping training after a finite
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training time is a common technique in practice, referred to as early stopping (Goodfellow et al.,
2016a, Section 7.8). It is considered as a form of implicit regularization, and our result sheds light
on this intuition by showing that the complexity of the trained networks increases with T .

The following proposition is a key step in proving the main theorem of this section.

Proposition 3.3. There exist M,K > 0 such that, for any t ∈ [0, T ], L ∈ N∗, and k ∈ {1, . . . , L},

max
( ∥∥AL(t)

∥∥
F
,
∥∥V L

k (t)
∥∥
F
,
∥∥WL

k (t)
∥∥
F
,
∥∥BL(t)

∥∥
F

)
≤M,

and, for k ∈ {1, . . . , L− 1},

max
( ∥∥V L

k+1(t)− V L
k (t)

∥∥
F
,
∥∥WL

k+1(t)−WL
k (t)

∥∥
F

)
≤ K

L
.

Moreover, with probability at least 1− exp
(
− 3qm

16

)
, the following expressions hold for M and K:

M = TMπ + 2
√
qm, K = βTeαT , (3.7)

where Mπ is the supremum of π in Frobenius norm, and α and β depend on X , Y, M , and σ.

Proof. See Section 3.B.3.

This proposition ensures that the size of the weights and the difference between successive
weights remain bounded throughout training. We can now state the main result, which states the
convergence, for any training time in [0, T ], of the neural network to a neural ODE as L→∞.
Recall that a sequence of functions fL of some variable u is said to converge uniformly over
u ∈ U to f if supu∈U ∥fL(u)− f(u)∥ → 0.

Theorem 3.4. Consider the residual network (3.3) with the training dynamics (3.5). Then the
following statements hold as L tends to infinity:

(i) There exist functions A : [0, T ]→ Rq×d and B : [0, T ]→ Rd′×q such that AL(t) and BL(t)
converge uniformly over t ∈ [0, T ] to A(t) and B(t).

(ii) There exists a Lipschitz continuous function Z : [0, 1]× [0, T ]→ Rq×m × Rm×q such that

ZL : [0, 1]× [0, T ]→ Rq×m × Rm×q, (s, t) 7→ ZL(s, t) = ZL
⌊(L−1)s⌋+1(t) (3.8)

converges uniformly over s ∈ [0, 1] and t ∈ [0, T ] to Z = (V,W).

(iii) Uniformly over s ∈ [0, 1], t ∈ [0, T ], and x ∈ X , the hidden layer hL⌊Ls⌋(t) converges to the
solution at time s of the neural ODE

H(0, t) = A(t)x

∂H

∂s
(s, t) =

1√
m
V(s, t)σ

( 1√
q
W(s, t)H(s, t)

)
, s ∈ [0, 1].

(3.9)

(iv) Uniformly over t ∈ [0, T ] and x ∈ X , the output FL(x; t) converges to B(t)H(1, t).

Proof. See Section 3.B.4.
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Let us sketch the proof of statement (ii), which is the cornerstone of the theorem. A first key idea
is to introduce in (3.8) the piecewise-constant continuous-depth interpolation ZL of the weights,
whose ambient space does not depend on L, in contrast to the discrete weight sequence ZL

k .
Since the weights remain bounded during training by Proposition 3.3, the Arzelà-Ascoli theorem
guarantees the existence of an accumulation point for ZL. We show that the accumulation point
is unique because it is the solution of an ODE satisfying the conditions of the Picard-Lindelöf
theorem. The uniqueness of the accumulation point then implies the existence of a limit for the
weights.

There are two notable byproducts of our proof. The first one is an explicit description of the
training dynamics of the limiting weights A, B, and Z, as the solution of an ODE system, as
presented in Appendix 3.A.5. The second one, which we now describe, consists of norm bounds
on the weights. Proposition 3.3 bounds the discrete weights and the difference between two
consecutive weights respectively by some M,K > 0. The proof of Theorem 3.4 shows that
this bound carries over to the continuous weights, in the sense that A(t), V(s, t), W(s, t), and
B(t) are uniformly bounded by M , and V(·, t) and W(·, t) are uniformly Lipschitz continuous
with Lipschitz constant K. Formally, this last property means that, for any s, s′ ∈ [0, 1] and
t ∈ [0, T ],

∥V(s′, t)− V(s, t)∥F ≤ K|s′ − s| and ∥W(s′, t)−W(s, t)∥F ≤ K|s′ − s|.
The boundedness and Lipschitz continuity of the weights are important features because they
limit the statistical complexity of neural ODEs. More generally, norm-based bounds are a
common approach in the statistical theory of deep learning (see, e.g., Bartlett et al., 2017, and
references therein). Looking at the formula (3.7) for M and K, one can see in particular that the
bounds diverge exponentially with T , providing an argument in favor of early stopping.

Our approach so far characterizes the large-depth limit of the neural network for a finite training
time T , but two questions remain open. A first challenge is to characterize the value of the
loss after training. A second one is to provide insight into the convergence of the optimization
algorithm in the long-time limit, i.e., as T tends to infinity. To answer these questions, we
move to the setting where the width of the network is large enough, which allows us to prove
a Polyak-Łojasiewicz condition and thereby the long-time convergence of the training loss to
zero.

3.4.2 Convergence in the long-time limit for wide networks

Proving convergence of gradient-based optimization algorithms for neural networks is a major
difficulty in deep learning theory. One direction recently explored considers sufficiently wide
neural networks, with the Polyak-Łojasiewicz (PL) condition. In our setting, they are written as
follows (with the notation ZL = (V L

k ,W
L
k )k∈{1,...,L}):

Definition 3.5. For M,µ > 0, the residual network (3.3) is said to satisfy the (M,µ)-local PL
condition around a set of parameters (ĀL, Z̄L, B̄L) if, for every set of parameters (AL, ZL, BL)
such that

∥AL − ĀL∥F ⩽M, sup
k∈{1,...,L}

∥ZL
k − Z̄L

k ∥F ⩽M, ∥BL − B̄L∥F ⩽M,

one has
∥∥∥ ∂ℓ

L

∂AL

∥∥∥
2

F
+ L

L∑

k=1

∥∥∥ ∂ℓ
L

∂ZL
k

∥∥∥
2

F
+
∥∥∥ ∂ℓ

L

∂BL

∥∥∥
2

F
≥ µℓL,

where the loss ℓL is evaluated at the set of parameters (AL, ZL, BL).

74



The next important point is to observe that, under the setup of Section 3.3 and some additional
assumptions, the residual network satisfies the local PL condition of Definition 3.5.

Proposition 3.6. Assume that the sample points (xi, yi) are i.i.d. such that ∥xi∥2 =
√
q. Then

there exist c1, . . . , c4 > 0 (depending only on σ) and δ > 0 such that, if

q ≥ d+ d′, m ≥ c1n, L ≥ c2
√
nq,

then, with probability at least 1 − δ, the residual network (3.3) satisfies the (M,µ)-local PL
condition around its initialization, with M =

c3√
nq

and µ =
c4

n
√
nq

.

Proof. See Section 3.B.5.

We emphasize that Proposition 3.6 requires the width m to scale only linearly with the sample
size n, which improves on the literature (see Section 3.2). The other assumptions are mild. Note
that our proof shows that the parameter δ is small if n grows at most polynomially with d (see
Appendix 3.B.5).

We are now ready to state convergence in the long-time and large-depth limits to a global
minimum of the empirical risk, when the local PL condition holds and the norm of the targets yi
is small enough.

Theorem 3.7. Consider the residual network (3.3) with the training dynamics (3.4), and
assume that the assumptions of Proposition 3.6 hold. Then there exist C, δ > 0 such that, if
1
n

∑n
i=1 ∥yi∥2 ≤ C, then, with probability as least 1− δ, the gradient flow is well defined on R+,

and, for t ∈ R+ and L ∈ N∗,

ℓL(t) ≤ exp
(
− C ′t

n
√
nq

)
ℓL(0), (3.10)

for some C ′ > 0 depending on σ. Moreover, the following statements hold as t and L tend to
infinity:

(i) There exist matrices A∞ ∈ Rq×d and B∞ ∈ Rd′×q such that AL(t) and BL(t) converge to
A∞ and B∞.

(ii) There exists a Lipschitz continuous function Z∞ : [0, 1]→ Rq×m × Rm×q such that

ZL : [0, 1]× R+ → Rq×m × Rm×q, (s, t) 7→ ZL(s, t) = ZL
⌊(L−1)s⌋+1(t)

converges uniformly over s ∈ [0, 1] to Z∞ = (V∞,W∞).

(iii) Uniformly over s ∈ [0, 1] and x ∈ X , the hidden layer hL⌊Ls⌋(t) converges to the solution at
time s of the neural ODE

H(0) = A∞x

dH

ds
(s) =

1√
m
V∞(s)σ

( 1√
q
W∞(s)H(s)

)
, s ∈ [0, 1].

(iv) Uniformly over x ∈ X , the output FL(x; t) converges to F∞(x) = B∞H(1). Furthermore,
F∞(xi) = yi for all i ∈ {1, . . . , n}.

Proof. See Section 3.B.6.
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This theorem proves two important results of separate interest. On the one hand, equation (3.10)
shows the long-time convergence of the gradient flow for deep residual networks under the linear
overparameterization assumption m ≥ c1n of Proposition 3.6. On the other hand, when both
t and L tend to infinity, the network converges to a neural ODE that further interpolates the
training data. Note that the order in which t and L tend to infinity does not matter by uniform
convergence properties.

3.4.3 Generalizations to other architectures and initialization

To simplify the exposition, we have so far considered a particular residual architecture defined in
(3.3). However, most of our results hold for a more general residual network of the form

hLk+1 = hLk +
1

L
f(hLk , Z

L
k+1), k ∈ {0, . . . , L− 1}, (3.11)

where f : Rq × Rp → Rq is a C2 function such that f(0, ·) ≡ 0 and f(·, z) is uniformly Lipschitz
for z in any compact. All our results are shown in the appendix for this general model, except
the PL condition of Proposition 3.6, which we prove only for the specific setup of Section 3.3. In
particular, the conclusions of Theorem 3.4 hold for the general model (3.11), as well as those of
Theorem 3.7 if the network satisfies a (M,µ)-local PL condition with µ sufficiently large (see
Appendix 3.B for details).

It is easy to see that our residual network of interest (3.3) is a special case of the general model
(3.11) if σ satisfies the assumptions of Section 3.3. However, other choices are possible, such as
convolutional layers or a Lipschitz continuous version of Transformer (Kim et al., 2021). This
latter application is particularly interesting in the light of the literature analyzing the Transformer
architecture from a neural ODE point of view (Lu et al., 2019; Sander et al., 2022a; Geshkovski
et al., 2023).

Moreover, the initialization assumption made in Section 3.3 can also be relaxed to include any
so-called smooth initialization of the weights (see Marion et al. (2022)). A smooth initialization
corresponds to taking V L

k (0) and WL
k (0) as discretizations of some Lipschitz continuous functions

V0 : [0, 1] → Rq×m and W0 : [0, 1] → Rm×q, that is, for k ∈ {1, . . . , L}, V L
k (0) = V0( kL)

and WL
k (0) = W0(

k
L). A typical concrete example is to let the entries of V0 and W0 be

independent Gaussian processes with expectation zero and squared exponential covariance
K(x, x′) = exp(− (x−x′)2

2ℓ2
), for some ℓ > 0. As shown by Proposition 3.2, a smooth initialization

means that the network discretizes a neural ODE.

3.5 Numerical experiments

We now present numerical experiments to validate our theoretical findings, using both synthetic
and real-world data. Experimental details are given in Appendix 3.E. Our code will be open
sourced.

3.5.1 Synthetic data

We consider the residual network (3.3) with the initialization scheme of Section 3.3. So, the
V L
k are initialized to zero and the WL

k to weight-tied standard Gaussian matrices. To ease the
presentation, we consider the case where q = d = d′, and we do not train the weights AL and
BL, which therefore stay equal to the identity. The activation function is GELU (Hendrycks and
Gimpel, 2016), which is a smooth approximation of ReLU: x 7→ max(x, 0). The sample points
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(xi, yi)1≤i≤n follow independent standard Gaussian distributions. Note that it does not hurt to
take x and y independent since, in this subsection, our focus is on optimization results only and
not on statistical aspects. The mean-squared error is minimized using full-batch gradient descent.
The following experiments exemplify the large-depth (t ∈ [0, T ], L→∞) and long-time (t→∞,
L finite) limits.

Figure 3.1: Left: 1/L convergence of the maximum distance between two successive weight
matrices max1≤k≤L,t∈[0,T ](∥ZL

k (t)− ZL
k+1(t)∥F ). Right: uniform convergence of ZL to its large-

depth limit Z. Here, for a matrix-valued function f , ∥f∥ denotes (
∫ 1
0 ∥f(s)∥2Fds)1/2.

Large-depth limit. We illustrate key insights of Proposition 3.3 and Theorem 3.4, with
T = 500. In Figure 3.1 (left), we plot the maximum distance between two successive weight
matrices, i.e., max1≤k≤L,t∈[0,T ](∥ZL

k (t)− ZL
k+1(t)∥F ), for different values of L and training time

t ∈ [0, T ]. We observe a 1/L convergence rate, as predicted by Proposition 3.3. Moreover, for a
fixed L, the distance between two successive weight matrices increases with the training time,
however at a much slower pace than the exponential upper bound on K given in identity (3.7).
Figure 3.1 (right) depicts the uniform convergence of ZL to its large-depth limit Z, illustrating
statement (ii) of Theorem 3.4. The function Z is computed using ZL for L = 214. Note that the
convergence is slower for larger training times.

Long-time limit. We now turn to the long-time training setup, training for 80,000 iterations
with L = 64. In Figure 3.2, we plot a specific (randomly-chosen) entry of matrices V L

k and WL
k

across layers, for different training times. This illustrates Theorem 3.7 in a practical setting
since, visually, the weights behave as a Lipschitz continuous function for any training time and
converge to a Lipschitz continuous function as t→∞. We also display the loss as a function of
the training time, corroborating the convergence of the loss to zero in Theorem 3.7.
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Figure 3.2: Left: Randomly-chosen entry of the weight matrices across layers (x-axis) for various
training times t (lighter color indicates higher training time). Right: Loss against training time.
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and convL
i,k either to weight-tied or to i.i.d. Gaussian. Table 1 reports the accuracy of the trained

network, and whether it has Lipschitz continuous (or smooth) weights after training, depending on
the activation function � and on the initialization scheme. To assess the smoothness of the weights,
we simply resort to visual inspection. For example, Figure 3 (left) shows two random entries of the
convolutions across layers with GELU and a weight-tied initialization: the smoothness is preserved
after training. Smooth weights indicate that the residual network discretizes a neural ODE (see, e.g.,
Proposition 2). On the contrary, if an i.i.d. initialization is used, smoothness is not preserved after
training, as shown in Figure 3 (right), and the residual network does not discretize a neural ODE.
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Figure 3: Random entries of the convolutions across layers (x-axis) after training. Left: Weight-tied
initialization leads to smooth weights. Right: i.i.d. initialization leads to non-smooth weights.

Act. function Init. scheme Train Acc. Test Acc. Smooth trained weights

Identity Weight-tied 56.5 ± 0.1 59.8 ± 0.7 X
i.i.d. 56.1 ± 0.3 59.6 ± 0.7 ⇥

GELU Weight-tied 80.5 ± 0.7 79.9 ± 0.2 X
i.i.d. 89.8 ± 0.5 85.7 ± 0.1 ⇥

ReLU Weight-tied 97.4 ± 0.6 88.1 ± 0.1 ⇥
i.i.d. 98.4 ± 0.1 88.4 ± 0.5 ⇥

Table 1: Accuracy and smoothness of the trained weights depending on the choice of activation
function � and initialization scheme. We display the median over 5 runs and the interquartile range
between the first and third quantile. Smooth weights correspond to a neural ODE structure.

Table 1 conveys several important messages. First, in accordance with our theory (Theorem 4), we
obtain a neural ODE structure when using a smooth activation function and weight-tied initialization
(lines 1 and 3 of Table 1). This is not the case when using the non-smooth ReLU activation and/or
i.i.d. initialization. In fact, we prove in Appendix D that the smoothness of the weights is lost when
training with ReLU in a simple setting. Furthermore, the third line of Table 1 shows that it is possible
to obtain a reasonable accuracy with a neural ODE structure, which, as emphasized in Section 1, also
comes with theoretical and practical advantages. Nevertheless, we see an improvement in accuracy in
cases corresponding to non-smooth weights, i.e., to a network that does not discretize an ODE.

6 CONCLUSION

We study the convergence of deep residual networks to neural ODEs. When properly scaled and
initialized, residual networks trained with fixed-horizon gradient flow converge to neural ODEs as the
depth tends to infinity. This result holds for very general architectures. In the case where both training
time and depth tend to infinity, convergence holds under a local Polyak-Łojasiewicz condition. We
prove such a condition for a family of deep residual networks with linear overparameterization.

The setting of neural ODE-like networks comes with strong guarantees, at the cost of some per-
formance gap when compared with i.i.d. initialization as highlighted by the experimental section.
Extending the mathematical large-depth study to i.i.d. instead of weight-tied initialization is an
interesting problem for future research. Previous work suggests that the correct limit object is then a
stochastic differential equation (Cohen et al., 2021; Cont et al., 2022; Marion et al., 2022).

9

Figure 3.3: Random entries of the convolutions across layers (x-axis) after training. Left: Weight-
tied initialization leads to smooth weights. Right: i.i.d. initialization leads to non-smooth
weights.

3.5.2 Real-world data

We now investigate the properties of deep residual networks on the CIFAR 10 dataset (Krizhevsky,
2009). We deviate from the mathematical model (3.3) by using convolutions instead of fully
connected layers. More precisely, AL is replaced by a trainable convolutional layer, and the
residual layers write

hLk+1 = hLk +
1

L
bnL2,k(conv

L
2,k(σ(bn

L
1,k(conv

L
1,k(h

L
k ))))), k ∈ {0, . . . , L− 1},

where convLi,k are convolutions and bnLi,k are batch normalizations. The output of the residual
layers is mapped to logits through a linear layer BL. We initialize bnL2,k to 0, and bnL1,k and
convLi,k either to weight-tied or to i.i.d. Gaussian. Table 3.1 reports the accuracy of the trained
network, and whether it has Lipschitz continuous (or smooth) weights after training, depending
on the activation function σ and on the initialization scheme. To assess the smoothness of
the weights, we simply resort to visual inspection. For example, Figure 3.3 (left) shows two
random entries of the convolutions across layers with GELU and a weight-tied initialization:
the smoothness is preserved after training. Smooth weights indicate that the residual network
discretizes a neural ODE (see, e.g., Proposition 3.2). On the contrary, if an i.i.d. initialization is
used, smoothness is not preserved after training, as shown in Figure 3.3 (right), and the residual
network does not discretize a neural ODE.

Act. function Init. scheme Train Acc. Test Acc. Smooth trained weights

Identity Weight-tied 56.5± 0.1 59.8± 0.7 ✓
i.i.d. 56.1± 0.3 59.6± 0.7 ×

GELU Weight-tied 80.5± 0.7 79.9± 0.2 ✓
i.i.d. 89.8± 0.5 85.7± 0.1 ×

ReLU Weight-tied 97.4± 0.6 88.1± 0.1 ×
i.i.d. 98.4± 0.1 88.4± 0.5 ×

Table 3.1: Accuracy and smoothness of the trained weights depending on the choice of activation
function σ and initialization scheme. We display the median over 5 runs and the interquartile
range between the first and third quantile. Smooth weights correspond to a neural ODE structure.

Table 3.1 conveys several important messages. First, in accordance with our theory (Theorem
3.4), we obtain a neural ODE structure when using a smooth activation function and weight-tied
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initialization (lines 1 and 3 of Table 3.1). This is not the case when using the non-smooth ReLU
activation and/or i.i.d. initialization. In fact, we prove in Appendix 3.D that the smoothness of
the weights is lost when training with ReLU in a simple setting, confirming this experimental
observation. Furthermore, the third line of Table 3.1 shows that it is possible to obtain a
reasonable accuracy with a neural ODE structure, which, as emphasized in Section 3.1, also
comes with theoretical and practical advantages. Nevertheless, we obtain an improvement in
accuracy in the cases corresponding to non-smooth weights, i.e., to a residual network that does
not discretize an ODE. Extending our theory to such cases is left for future work.

3.6 Conclusion

We study the convergence of deep residual networks to neural ODEs. When properly scaled
and initialized, residual networks trained with fixed-horizon gradient flow converge to neural
ODEs as the depth tends to infinity. This result holds for very general architectures. In the
case where both training time and depth tend to infinity, convergence holds under a local
Polyak-Łojasiewicz condition. We prove such a condition for a family of deep residual networks
with linear overparameterization.

The setting of neural ODE-like networks comes with strong guarantees, at the cost of some
performance gap when compared with i.i.d. initialization as highlighted by the experimental
section. Extending the mathematical large-depth study to the i.i.d. case is an interesting problem
for future research. Previous work suggests that the correct limit object is then a stochastic
differential equation instead of an ODE, such as Cohen et al. (2021); Cont et al. (2022); Marion
et al. (2022).

3.A Some results for general residual networks

Lipschitz continuity. Let (U , ∥ · ∥), (V , ∥ · ∥), and (W , ∥ · ∥) be generic normed spaces. Then
a function of two variables g : U × V → W is:

(i) (Globally) Lipschitz continuous if there exists K ≥ 0 such that, for (u, v), (u′, v′) ∈ U × V ,

∥g(u, v)− g(u′, v)∥ ≤ K∥u− u′∥+K∥v − v′∥.

(ii) Locally Lipschitz continuous in its first variable if, for any compacts E ⊂ U , E′ ⊂ V , there
exists K ≥ 0 such that, for (u, v), (u′, v) ∈ E × E′,

∥g(u, v)− g(u′, v)∥ ≤ K∥u− u′∥.

Equivalent definitions hold for a function of one variable. Moreover, g(·, v) is said to be uniformly
Lipschitz continuous for v in V if there exists K ≥ 0 such that, for (u, v), (u′, v) ∈ U × V ,

∥g(u, v)− g(u′, v)∥ ≤ K∥u− u′∥,

and uniformly Lipschitz continuous for v in any compact if, for any compact E′ ⊂ V , there exists
K ≥ 0 such that, for (u, v), (u′, v) ∈ U × E′,

∥g(u, v)− g(u′, v)∥ ≤ K∥u− u′∥.

Throughout, we refer to a Lipschitz continuous function with Lipschitz constant K ≥ 0 as
K-Lipschitz.
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Model. As explained in Section 3.4.3, most of our results are proven for the general residual
network

hL0 (t) = AL(t)x

hLk+1(t) = hLk (t) +
1

L
f(hLk (t), Z

L
k+1(t)), k ∈ {0, . . . , L− 1}, (3.12)

FL(x; t) = BL(t)hLL(t),

where ZL(t) = (ZL
1 (t), . . . , Z

L
L(t)) ∈ (Rp)L and f : Rq × Rp → Rq is a C2 function such that

f(0, ·) ≡ 0 and f(·, z) is uniformly Lipschitz for z in any compact. Let us introduce the
backpropagation equations, which are instrumental in the study of the gradient flow dynamics.
These equations define the backward state pLk (t) ∈ Rq through the backward recurrence

pLL(t) = 2BL(t)⊤(FL(x; t)− y)

pLk (t) = pLk+1(t) +
1

L
∂1f(h

L
k (t), Z

L
k+1(t))p

L
k+1(t), k ∈ {0, . . . , L− 1}, (3.13)

where ∂1f ∈ Rq×q stands for the Jacobian matrix of f with respect to its first argument. Similarly,
we let ∂2f ∈ Rq×p be the Jacobian matrix of f with respect to its second argument. For a sample
(xi, yi)1≤i≤n ∈ (X × Y)n, we let hLk,i(t) and pLk,i(t) be, respectively, the hidden layer hLk (t) and
the backward state pLk (t) associated with the i-th input xi. Denoting the mean squared error
associated with the sample by ℓL, we have, by the chain rule,

∂ℓL

∂AL
(t) =

1

n

n∑

i=1

pL0,i(t)x
⊤
i (3.14)

∂ℓL

∂ZL
k

(t) =
1

nL

n∑

i=1

∂2f(h
L
k−1,i(t), Z

L
k (t))

⊤pLk−1,i(t), k ∈ {1, . . . , L}, (3.15)

∂ℓL

∂BL
(t) =

2

n

n∑

i=1

(FL(xi; t)− yi)hLL,i(t)⊤. (3.16)

Initialization. The parameters (ZL
k (t))1≤k≤L are initialized to ZL

k (0) = Z init( k
L

)
, where

Z init : [0, 1]→ Rp is a Lipschitz continuous function. Furthermore, we initialize AL(0) to some
matrix Ainit ∈ Rq×d and BL(0) = Binit ∈ Rd′×q. Note that this initialization scheme is a
generalization of the one presented in Section 3.3.

Additional notation. For a vector x, ∥x∥ denotes the Euclidean norm. For a matrix A, the
operator norm induced by the Euclidean norm is denoted by ∥A∥2, and the Frobenius norm
is denoted by ∥A∥F . Finally, we use the notation AL (resp. ZL

k , BL) to denote the function
t 7→ AL(t) (resp. t 7→ ZL

k (t), t 7→ BL(t)), since the parameters are considered as functions of the
training time throughout this appendix.

Overview of Appendix A. First, in Section 3.A.1, we study the case of the (clipped) gradient
flow (3.5). We show that the weights and the difference between successive weights are bounded
during the entire training. Section 3.A.2 shows a similar result for the standard gradient flow (3.4)
under a PL condition. In Section 3.A.3, we show a generalized version of the Arzelà-Ascoli
theorem, which allows us to prove the existence of a converging subsequence of the weights
in the large-depth limit. Section 3.A.4 is devoted to the convergence of the Euler scheme for
parameterized ODEs. We then proceed to prove in Section 3.A.5 our main result, i.e., the
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large-depth convergence of the gradient flow. The key step is to establish the uniqueness of the
adherence point of the weights. Finally, in Section 3.A.6, we prove the existence of a double
limit for the weights and the hidden states when both the depth and the training time tend to
infinity.

3.A.1 The trained weights are bounded in the finite training-time setup

Before stating the result, let us introduce the notation ∂22f(h, z) ∈ Rq×p×p, which is the third-
order tensor of second partial derivatives of f with respect to z. We endow the space Rq×p×p

with the operator norm ∥ · ∥2 induced by the Euclidean norm in Rp and the ∥ · ∥2 norm in Rq×p.
In other words,

∥∂22f(h, z)∥2 = sup
u∈Rp,∥u∥=1

∥∂22f(h, z)u∥2,

where ∂22f(h, z)u ∈ Rq×p is the tensor product of ∂22f(h, z) against u. Similarly, ∂21f(h, z) ∈
Rq×p×q denotes the third-order tensor of cross second partial derivatives of f , and the space
Rq×p×q is endowed with the operator norm ∥ · ∥2 induced by the Euclidean norm in Rq and the
∥ · ∥2 norm in Rq×p.

Proposition 3.8. Consider the residual network (3.12) initialized as explained in Appendix 3.A
and trained with the gradient flow (3.5) on [0, T ], for some T ∈ (0,∞). Let

Mπ = max
(

max
A∈Rq×d

∥π(A)∥F , max
Z∈Rp

∥π(Z)∥, max
B∈Rd′×q

∥π(B)∥F
)
,

M0 = max
(
∥Ainit∥F , sup

s∈[0,1]
∥Z init(s)∥, ∥Binit∥F

)
and M =M0 + TMπ.

Then the gradient flow is well defined on [0, T ], and, for t ∈ [0, T ], L ∈ N∗, and k ∈ {1, . . . , L},

∥AL(t)∥F ≤M, ∥ZL
k (t)∥ ≤M, and ∥BL(t)∥F ≤M. (3.17)

Moreover, there exist α, β > 0 such that, for t ∈ [0, T ] and k ∈ {1, . . . , L− 1},

∥ZL
k+1(t)− ZL

k (t)∥ ≤
(
∥ZL

k+1(0)− ZL
k (0)∥+

βT

L

)
eαT .

The following expressions for α and β hold:

α = 2eKK ′M(eKM2MX +MY ) and β = 2KeKM(K + eKK ′MMX)(eKM2MX +MY ),

where

MX = sup
x∈X
∥x∥, MY = sup

y∈Y
∥y∥, K1 = sup

∥z∥≤M

∥∥∂1f(h, z)
∥∥
2

(3.18)

E = {(h, z) ∈ Rd × Rp, ∥h∥ ≤ eK1MMX , ∥z∥ ≤M} (3.19)
K2 = sup

(h,z)∈E

∥∥∂2f(h, z)
∥∥
2
, K = max(K1,K2)

K ′ = sup
(h,z)∈E

(
max

(∥∥∂22f(h, z)
∥∥
2
,
∥∥∂21f(h, z)

∥∥
2

))
.

Proof. The time-independent dynamics

(AL, ZL
k , B

L) 7→
(
π
(
− ∂ℓL

∂AL

)
, π
(
− L ∂ℓ

L

∂ZL
k

)
, π
(
− ∂ℓL

∂BL

))
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defining the gradient flow (3.5) are locally Lipschitz continuous, hence the gradient flow is defined
on a maximal interval [0, Tmax) by the Picard-Lindelöf theorem (see Lemma 3.19). Let us show by
contradiction that Tmax = T . Assume that Tmax < T . If this is true, again by the Picard-Lindelöf
theorem, we know that the parameters diverge to infinity at Tmax. However, for any t ∈ [0, Tmax),
we have

∥AL(t)∥F ≤ ∥AL(0)∥F +

∫ t

0

∥∥∥dA
L

dt
(τ)
∥∥∥
F
dτ ≤M0 +

∫ t

0
Mπdτ ≤M0 + TMπ =M.

Bounds on BL and ZL
k by M can be shown similarly. This contradicts the divergence of the

parameters at t = Tmax. We conclude that the gradient flow is well defined on [0, T ] and that
the bounds (3.17) hold.

It remains to bound the difference ∥ZL
k+1(t)−ZL

k (t)∥. We have, for t ∈ [0, T ] and k ∈ {1, . . . , L−
1},

∥∥∥
dZL

k+1

dt
(t)− dZL

k

dt
(t)
∥∥∥ = L

∥∥∥ ∂ℓL

∂ZL
k+1

(t)− ∂ℓL

∂ZL
k

(t)
∥∥∥

≤
n∑

i=1

1

n

∥∥∂2f(hLk,i(t), ZL
k+1(t))

⊤pLk,i(t)− ∂2f(hLk−1,i(t), Z
L
k (t))

⊤pLk−1,i(t)
∥∥

≤ 1

n

n∑

i=1

∥∥∂2f(hLk,i(t), ZL
k+1(t))

∥∥
2

∥∥pLk,i(t)− pLk−1,i(t)
∥∥

+
∥∥pLk−1,i(t)

∥∥∥∥∂2f(hLk,i(t), ZL
k+1(t))− ∂2f(hLk−1,i(t), Z

L
k (t))

∥∥
2

(3.20)

Furthermore, for t ∈ [0, T ], k ∈ {0, . . . , L− 1}, and i ∈ {1, . . . , n},

∥hLk+1,i(t)∥ = ∥hLk,i(t) +
1

L
f(hLk,i(t), Z

L
k+1(t))∥ ≤ (1 +

K1

L
)∥hLk,i(t)∥,

since f(·, ZL
k+1(t)) is K1-Lipschitz, where K1 is defined by (3.18), and f(0, ZL

k+1(t)) = 0. There-
fore, for any k ∈ {1, . . . , L},

∥hLk,i(t)∥ ≤ eK1∥hL0,i(t)∥ = eK1∥AL(t)xi∥ ≤ eK1MMX . (3.21)

This bound shows that the pair (hLk,i(t), Z
L
k+1(t)) belongs to the compact E defined in (3.19) for

every t ∈ [0, T ], k ∈ {1, . . . , L}, and i ∈ {1, . . . , n}. In particular, ∥∂2f(hLk−1,i(t), Z
L
k (t))∥2 ≤ K,

and
∥∥∂2f(hLk,i(t), ZL

k+1(t))− ∂2f(hLk−1,i(t), Z
L
k (t))

∥∥
2

≤ K ′∥hLk,i(t)− hLk−1,i(t)∥+K ′∥ZL
k+1(t)− ZL

k (t)∥.

Returning to (3.20), we obtain

∥∥∥
dZL

k+1

dt
(t)− dZL

k

dt
(t)
∥∥∥ ≤ 1

n

n∑

i=1

K∥pLk,i(t)− pLk−1,i(t)∥

+K ′∥pLk−1,i(t)∥
(
∥hLk,i(t)− hLk−1,i(t)∥+ ∥ZL

k+1(t)− ZL
k (t)∥

)
.

For k ∈ {1, . . . , L} and i ∈ {1, . . . , n},
∥∥pLk,i(t)− pLk−1,i(t)

∥∥ =
1

L

∥∥∂1f(hLk−1,i(t), Z
L
k (t))p

L
k,i(t)

∥∥ ≤ K

L

∥∥pLk,i(t)
∥∥ ,
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and, similarly,

∥∥hLk,i(t)− hLk−1,i(t)
∥∥ =

1

L
∥f(hLk−1,i(t), Z

L
k (t))∥ ≤

K

L

∥∥hLk−1,i(t)
∥∥ ≤ KeKMMX

L
.

Thus,

∥∥∥
dZL

k+1

dt
(t)− dZL

k

dt
(t)
∥∥∥ ≤ 1

n

n∑

i=1

∥pLk,i(t)∥
(K2

L
+
K ′K

L
eKMMX +K ′∥ZL

k+1(t)− ZL
k (t)∥

)
.

Moreover, for k ∈ {0, . . . , L} and i ∈ {1, . . . , n},

∥pLk,i(t)∥ ≤ ∥pLk+1,i(t)∥+
1

L

∥∥∂1f(hLk,i(t), ZL
k+1(t))p

L
k+1,i(t)

∥∥ ≤ ∥pLk+1,i(t)∥+
K

L
∥pLk+1,i(t)∥.

Hence

∥pLk,i(t)∥ ≤ eK∥pLL,i(t)∥ = 2eK∥BL(t)⊤(FL(xi; t)− yi)∥
≤ 2eKM

(
∥BL(t)hLL,i(t)∥+ ∥yi∥

)
≤ 2eKM(eKM2MX +MY ),

where we use (3.17) and (3.21) for the last inequality. Putting all the pieces together, we obtain

∥∥∥dZ
L
k

dt
(t)− dZL

k+1

dt
(t)
∥∥∥ ≤ α∥ZL

k (t)− ZL
k+1(t)∥+

β

L
.

Integrating between 0 and t, we see that

∥ZL
k+1(t)− ZL

k (t)∥ ≤ ∥ZL
k+1(0)− ZL

k (0)∥+
βt

L
+

∫ t

0
α∥ZL

k (τ)− ZL
k+1(τ)∥dτ.

Applying Grönwall’s inequality (see, e.g., Dragomir, 2003), we conclude that ∥ZL
k+1(t)−ZL

k (t)∥ ≤
(∥ZL

k+1(0)− ZL
k (0)∥+ βT

L )eαT , as desired.

3.A.2 The trained weights are bounded under the local PL condition

Proposition 3.9. Consider the residual network (3.12) initialized as explained in Appendix 3.A
and trained with the gradient flow (3.4) on [0,∞]. Then, for M > 0, there exists µ > 0 such that,
if the residual network satisfies the (M,µ)-local PL condition (3.5) around its initialization for
any L ∈ N∗, then:

(i) The gradient flow is well defined on R+, and, for t ∈ R+, L ∈ N∗, and k ∈ {1, . . . , L},

∥AL(t)∥F ≤MA, ∥ZL
k (t)∥ ≤MZ , and ∥BL(t)∥F ≤MB,

where

MA = ∥Ainit∥2 +M, MZ = sup
s∈[0,1]

∥Z init(s)∥+M, and MB = ∥Binit∥2 +M.

(ii) There exists K̃ > 0 such that, for t ∈ R+, L ∈ N∗, and k ∈ {1, . . . , L},

∥ZL
k (t)− ZL

k+1(t)∥ ≤
K̃

L
.
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(iii) There exists a bounded integrable function b : R+ → R such that, for t ∈ R+, L ∈ N∗, and
k ∈ {1, . . . , L},

max
(∥∥∥dA

L

dt
(t)
∥∥∥,
∥∥∥dZ

L
k

dt
(t)
∥∥∥,
∥∥∥dB

L

dt
(t)
∥∥∥
)
≤ b(t)

(iv) AL(t), BL(t), and ZL
k (t) admit a limit uniformly over L ∈ N∗ and k ∈ {1, . . . , L} as

t→∞.

(v) For t ∈ R+ and L ∈ N∗, ℓL(t) ≤ e−µtℓL(0).

Moreover, the following expression for µ hold:

µ = max(MBK,MBMX ,MAMX)
8eK

M
sup
L∈N∗

√
ℓL(0), (3.22)

where

MX = sup
x∈X
∥x∥, K1 = sup

∥z∥≤MZ

∥∥∂1f(h, z)
∥∥

E = {(h, z) ∈ Rd × Rp, ∥h∥ ≤ eK1MAMX , ∥z∥ ≤MZ}
K2 = sup

(h,z)∈E

∥∥∂2f(h, z)
∥∥, K = max(K1,K2).

Proof. Let M > 0, µ defined by (3.22), and assume that the residual network satisfies the
(M,µ)-local PL condition (3.5) around its initialization for any L ∈ N∗.

The time-independent dynamics

(AL, ZL
k , B

L) 7→
(
− ∂ℓL

∂AL
,−L ∂ℓ

L

∂ZL
k

,− ∂ℓL

∂BL

)

defining the gradient flow (3.5) are locally Lipschitz continuous, hence the gradient flow is
defined on a maximal interval [0, Tmax) by the Picard-Lindelöf theorem (see Lemma 3.19). Let
us show by contradiction that Tmax =∞. Assume that Tmax <∞. If this is true, again by the
Picard-Lindelöf theorem, we know that the parameters diverge to infinity at Tmax. In particular,
there exist t ∈ (0, Tmax) and k ∈ {1, . . . , L} such that

∥AL(t)−AL(0)∥F > M or ∥ZL
k (t)− ZL

k (0)∥ > M or ∥BL(t)−BL(0)∥F > M.

Let t∗ ∈ (0, Tmax) be the infimum of such times t. Then, for t < t∗ and k ∈ {1, . . . , L},
∥AL(t)−AL(0)∥F ≤M and ∥ZL

k (t)− ZL
k (0)∥ ≤M and ∥BL(t)−BL(0)∥F ≤M, (3.23)

and, by continuity of AL, BL, and ZL
k , these inequalities also hold for t = t∗. By definition, this

means that the (M,µ)-local PL condition is satisfied for t ≤ t∗, and ensures that

∥∥∥ ∂ℓ
L

∂AL
(t)
∥∥∥
2

F
+ L

L∑

k=1

∥∥∥ ∂ℓ
L

∂ZL
k

(t)
∥∥∥
2
+
∥∥∥ ∂ℓ

L

∂BL
(t)
∥∥∥
2

F
≥ µℓL(t).

Therefore, by definition of the gradient flow (3.4),

dℓL

dt
(t) =

〈 ∂ℓL
∂AL

(t),
dAL

dt
(t)
〉
+

L∑

k=1

〈 ∂ℓL
∂ZL

k

(t),
dZL

k

dt
(t)
〉
+
〈 ∂ℓL
∂BL

(t),
dBL

dt
(t)
〉

= −
∥∥∥ ∂ℓ

L

∂AL
(t)
∥∥∥
2

F
− L

L∑

k=1

∥∥∥ ∂ℓ
L

∂ZL
k

(t)
∥∥∥
2
−
∥∥∥ ∂ℓ

L

∂BL
(t)
∥∥∥
2

F

≤ −µℓL(t).
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Thus, by Grönwall’s inequality, for t ≤ t∗,

ℓL(t) ≤ e−µtℓL(0). (3.24)

Furthermore, by (3.23) and the definition of MA, MB , MZ , we have, for t ≤ t∗ and k ∈ {1, . . . , L},

∥AL(t)∥F ≤MA, ∥ZL
k (t)∥ ≤MZ , and ∥BL(t)∥F ≤MB.

A quick scan through the proof of Proposition 3.8 reveals that by similar arguments, we have,
for t ≤ t∗, k ∈ {1, . . . , L}, and i ∈ {1, . . . , n},

(hLk−1,i(t), Z
L
k (t)) ∈ E and ∥pLk−1,i(t)∥ ≤ 2eK∥pLL,i(t)∥ ≤ 2eKMB∥FL(xi; t)− yi∥.

Thus, for k ∈ {0, . . . , L},

1

n

n∑

i=1

∥pLk,i(t)∥ ≤
2eKMB

n

n∑

i=1

∥FL(xi; t)− yi∥ ≤ 2eKMB

√
ℓL(t) ≤ 2eKMBe

−µt
2

√
ℓL(0), (3.25)

where the second inequality is a consequence of the Cauchy-Schwartz inequality. Let us now
bound ∥ZL

k (t
∗)− ZL

k (0)∥. We have, for k ∈ {1, . . . , L},

∥ZL
k (t

∗)− ZL
k (0)∥ ≤

∫ t∗

0

∥∥∥dZ
L
k

dt
(t)
∥∥∥dt

≤ 1

n

n∑

i=1

∫ t∗

0

∥∥∂2f(hLk−1,i(t), Z
L
k (t))

⊤pLk−1,i(t)
∥∥dt

(by (3.15)).

≤ K

n

n∑

i=1

∫ t∗

0
∥pLk−1,i(t)∥dt,

since (hLk−1,i(t), Z
L
k (t)) ∈ E and ∥∂2f(h, z)∥ ≤ K for (h, z) ∈ E. Therefore, by (3.25),

∥ZL
k (t

∗)− ZL
k (0)∥ ≤ 2KeKMB

∫ t∗

0
e−

µt
2

√
ℓL(0)dt ≤ 4KeKMB

µ

√
ℓL(0) ≤ M

2
,

where the last inequality is a consequence of the definition of µ. Similarly, by (3.14) and (3.25),

∥AL(t∗)−AL(0)∥F ≤
∫ t∗

0

∥∥∥dA
L

dt
(t)
∥∥∥
F
dt

≤
∫ t∗

0

1

n

n∑

i=1

∥∥pL0,i(t)x⊤i
∥∥
F
dt

≤ 2eKMBMX

√
ℓL(0)

∫ t∗

0
e−

µt
2 dt

≤ 4eKMBMX

µ

√
ℓL(0)

≤ M

2
.
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Finally, by (3.16),

∥BL(t∗)−B(0)∥F ≤
∫ t∗

0

∥∥∥dB
L

dt
(t)
∥∥∥
F
dt

≤
∫ t∗

0

2

n

n∑

i=1

∥(FL(xi; t)− yi)hLL,i(t)⊤∥Fdt

≤ 2eKMAMX

√
ℓL(0)

∫ t∗

0
e−

µt
2 dt

≤ 4eKMAMX

µ

√
ℓL(0)

≤ M

2
,

where the third inequality is a consequence of the Cauchy-Schwartz inequality and of the fact
that ∥hLL,i(t)∥ ≤ eKMAMX . By continuity of AL, ZL

k , and BL, these three bounds contradict
the definition of t∗. We conclude that Tmax =∞ and that the parameters stay within a ball of
radius M of their initialization, yielding the inequalities, for t ∈ R+, L ∈ N∗, and k ∈ {1, . . . , L},

∥AL(t)∥F ≤MA, ∥BL(t)∥F ≤MB, ∥ZL
k (t)∥ ≤MZ .

This proves statement (i) of the proposition. Moreover, the analysis above show that the
derivatives of AL, ZL

k , and BL are bounded by a bounded integrable function independent of L
and k. This shows (iii), together with the fact that the functions AL(t), ZL

k (t), and BL(t) admit
limits as t→∞. Furthermore, the convergence towards their limit is uniform over L and k, as
we show for example for AL(t). If we denote by AL

∞ its limit, and apply the same steps as for
bounding ∥AL(t∗)−AL(0)∥F , we obtain, for any t ≥ 0,

∥AL
∞ −AL(t)∥F ≤

∫ ∞

t

∥∥∥dA
L

dτ
(τ)
∥∥∥
F
dτ

≤ 2eKMBMX

√
ℓL(0)

∫ ∞

t
e

−µτ
2 dτ

=
4eKMBMX

µ
e

−µt
2

√
ℓL(0)

≤ M

2
e

−µt
2 ,

where the last inequality comes from the definition of µ. The bound is independent of L, proving
statement (iv). Statement (v) readily follows from (3.24).

To complete the proof, it remains to prove statement (ii) by bounding the differences ∥ZL
k+1(t)−

ZL
k (t)∥. Now that we know that the weights are bounded, we can follow the same steps as in the

proof of Proposition 3.8 and show the existence of C1, C2 > 0 such that

∥∥∥
dZL

k+1

dt
(t)− dZL

k

dt
(t)
∥∥∥ ≤ 1

n

n∑

i=1

∥pLk,i(t)∥
(C1

L
+ C2∥ZL

k+1(t)− ZL
k (t)∥

)
.

Using (3.25), we obtain

∥∥∥
dZL

k+1

dt
(t)− dZL

k

dt
(t)
∥∥∥ ≤ 2eKMBe

−µt
2

√
ℓL(0)

(C1

L
+ C2∥ZL

k+1(t)− ZL
k (t)∥

)
.
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Integrating between 0 and t, we obtain

∥ZL
k+1(t)− ZL

k (t)∥ ≤ ∥ZL
k+1(0)− ZL

k (0)∥+
∫ t

0
2eKMBe

−µτ
2

√
ℓL(0)

C1

L
dτ

+

∫ t

0
2eKMBe

−µτ
2

√
ℓL(0)C2∥ZL

k+1(τ)− ZL
k (τ)∥dτ

≤ ∥ZL
k+1(0)− ZL

k (0)∥+
C1M

2MXL

+

∫ t

0
2eKMBe

−µτ
2

√
ℓL(0)C2∥ZL

k+1(τ)− ZL
k (τ)∥dτ,

where the second inequality uses the definition of µ. By Grönwall’s inequality,

∥ZL
k+1(t)− ZL

k (t)∥ ≤
(
∥ZL

k+1(0)− ZL
k (0)∥+

C1M

2MXL

)
exp

(∫ t

0
2eKMBe

−µτ
2

√
ℓL(0)C2dτ

)

≤
(
∥ZL

k+1(0)− ZL
k (0)∥+

C1M

2MXL

)
exp

(C2M

2MX

)
,

again by definition of µ. Finally, since ZL
k (0) = Z init( kL) and Z init is Lipschitz continuous, this

proves the existence of K̃ > 0 (independent of L, t and k) such that ∥ZL
k+1(t) − ZL

k (t)∥ ≤ K̃
L ,

which yields statement (ii).

3.A.3 Generalized Arzelà–Ascoli theorem

Proposition 3.10 (Generalized Arzelà–Ascoli theorem). Let I ⊆ R+ be an interval. We denote
by (ZL

k )L∈N∗,1≤k≤L be a family of C1 functions from I to Rp. Define

ZL : [0, 1]× I → Rp, (s, t) 7→ ZL(s, t) = ZL
⌊(L−1)s⌋+1(t).

Assume that there exist a constant C > 0 and a bounded integrable function b : I → R such that
the following statements hold for any t ∈ I and L ∈ N∗:

(i) For k ∈ {1, . . . , L− 1}, ∥ZL
k+1(t)− ZL

k (t)∥ ≤ C
L ,

(ii) For k ∈ {1, . . . , L}, ∥ZL
k (t)∥ ≤ C and ∥dZ

L
k

dt (t)∥ ≤ b(t).

Then there exist a subsequence (Zφ(L))L∈N∗ of (ZL)L∈N∗ and a Lipschitz continuous function
Zφ : [0, 1]× I → Rp such that Zφ(L)(s, t) tends to Zφ(s, t) uniformly over s and t.

Note that if I is a compact interval, then the existence of a (uniformly) convergent subsequence
is guaranteed by the standard Arzelà–Ascoli theorem. Indeed, the uniform equicontinuity is a
consequence of assumptions (i) and (ii), while (ii) provides a uniform bound. However, if I is
not compact, more involved arguments are needed.

Proof. Assume, without loss of generality, that b is also bounded by C. According to assumption
(i), for t ∈ I and i, j ∈ {1, . . . , L},

∥ZL
i (t)− ZL

j (t)∥ ≤
C|i− j|

L
.

Also, according to (ii), for t, t′ ∈ I and k ∈ {1, . . . , L},

∥ZL
k (t)− ZL

k (t
′)∥ =

∥∥∥
∫ t

t′

dZL
k

dτ
(τ)dτ

∥∥∥ ≤ C|t− t′|.
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It follows that, for s, s′ ∈ [0, 1] and t, t′ ∈ I,

∥ZL(s, t)−ZL(s′, t′)∥ ≤ ∥ZL(s, t)−ZL(s, t′)∥+ ∥ZL(s, t′)−ZL(s′, t′)∥

≤ C|t− t′|+ C|⌊(L− 1)s⌋ − ⌊(L− 1)s′⌋|
L

.

Therefore, with some simple algebra, we obtain

∥ZL(s, t)−ZL(s′, t′)∥ ≤ C|t− t′|+ C|s− s′|+ C

L
. (3.26)

The statement of the proposition is then a consequence of the next three steps.

There exists a convergent subsequence of (ZL(s, t))L∈N∗. First, let ((si, ti))i∈N = (Q ∩
[0, 1])× (Q ∩ I). By (ii), the sequence (ZL(si, ti))L∈N∗,i∈N is bounded. It is therefore possible
to construct by a diagonal procedure a subsequence (Zφ(L))L∈N∗ such that, for each i ∈ N,
(Zφ(L)(si, ti))L∈N∗ is a convergent sequence.

Let us now show that (Zφ(L)(s, t))L∈N∗ converges for any s ∈ [0, 1] and t ∈ I, by proving that it
is a Cauchy sequence in the complete metric space Rp. Let ε > 0, s ∈ [0, 1], and t ∈ I. Since
((si, ti))i∈N is dense in [0, 1]× I, there exists some j ∈ N such that |sj − s| ≤ ε and |tj − t| ≤ ε.
Then, for L,M ∈ N∗, we have

∥Zφ(L)(s, t)−Zφ(M)(s, t)∥
≤ ∥Zφ(L)(s, t)−Zφ(L)(sj , tj)∥+ ∥Zφ(L)(sj , tj)−Zφ(M)(sj , tj)∥
+ ∥Zφ(M)(sj , tj)−Zφ(M)(s, t)∥

≤ 2Cε+
C

φ(L)
+ ∥Zφ(L)(sj , tj)−Zφ(M)(sj , tj)∥+ 2Cε+

C

φ(M)
,

where we used inequality (3.26) twice. Since (Zφ(L)(sj , tj))L∈N∗ is a convergent sequence, it is a
Cauchy sequence. Thus, the bound can be made arbitrarily small for L,M large enough. This
shows that (Zφ(L)(s, t))L∈N∗ is also a Cauchy sequence. It is therefore convergent, and we denote
by Zφ(s, t) its limit.

The function Zφ is Lipschitz continuous. By considering (3.26) for the subsequence φ(L)
and letting L→∞, we have that, for any s, s′ ∈ [0, 1] and t, t′ ∈ I,

∥Zφ(s, t)−Zφ(s′, t′)∥ ≤ C(|s− s′|+ |t− t′|). (3.27)

The convergence of (Zφ(L)(s, t))L∈N∗ to Zφ(s, t) is uniform over s and t. Let ε > 0,
s ∈ [0, 1], and t ∈ I. Then, by (3.26) and (3.27), it is possible to find δ > 0 such that, for any
s′, s′′ ∈ [0, 1] and t′, t′′ ∈ I satisfying |s′ − s′′| ≤ δ and |t′ − t′′| ≤ δ,

∥Zφ(L)(s′, t′)−Zφ(L)(s′′, t′)∥ ≤ ε+ C

φ(L)
and ∥Zφ(s′, t′)−Zφ(s′′, t′)∥ ≤ ε, (3.28)

and

∥Zφ(L)(s′, t′)−Zφ(L)(s′, t′′)∥ ≤ ε+ C

φ(L)
and ∥Zφ(s′, t′)−Zφ(s′, t′′)∥ ≤ ε. (3.29)
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Furthermore, there exists a finite set {s1, . . . , sS} ⊂ [0, 1] such that

[0, 1] ⊂
S⋃

i=1

(si − δ, si + δ).

In the sequel, we denote by s∗ an element of {s1, . . . , sS} that is at distance at most δ from s.

If I is unbounded, then, by assumption (ii) and since b is integrable, there exists some t0 > 0
such that, for t ≥ t0,

∥Zφ(L)(s, t)−Zφ(L)(s, t0)∥ ≤
∫ t

t0

∥∥∥ d
dt
Z

φ(L)
⌊(φ(L)s−1)⌋+1(τ)

∥∥∥dτ ≤
∫ t

t0

b(τ)dτ ≤ ε. (3.30)

The same inequality holds for Zφ by letting L tend to infinity. If I is bounded, we simply let
t0 = sup I.

We may then pick a finite set {t1, . . . , tT } ⊂ [0, t0] such that

[0, t0] ⊂
T⋃

i=1

(ti − δ, ti + δ).

Two cases may arise depending on the value of t. If t ∈ [0, t0], then there exists an element of the
set {t1, . . . , tT } at distance at most δ from t, and we denote it by t∗. If t > t0, we let t∗ = t0.
According to (3.29) and (3.30), we then have in both cases that

∥Zφ(L)(s, t)−Zφ(L)(s, t∗)∥ ⩽ ε+
C

φ(L)
and ∥Zφ(s, t)−Zφ(s, t∗)∥ ⩽ ε. (3.31)

To conclude, we have to bound the term ∥Zφ(L)(s, t)−Zφ(s, t)∥ uniformly over s and t. We first
have

∥Zφ(L)(s, t)−Zφ(s, t)∥
≤ ∥Zφ(L)(s, t)−Zφ(L)(s, t∗)∥+ ∥Zφ(L)(s, t∗)−Zφ(s, t∗)∥
+ ∥Zφ(s, t∗)−Zφ(s, t)∥

≤ 2ε+
C

φ(L)
+ ∥Zφ(L)(s, t∗)−Zφ(s, t∗)∥,

where the last inequality is a consequence of (3.31). The last term can be bounded as follows:

∥Zφ(L)(s, t∗)−Zφ(s, t∗)∥
≤ ∥Zφ(L)(s, t∗)−Zφ(L)(s∗, t∗)∥+ ∥Zφ(L)(s∗, t∗)−Zφ(s∗, t∗)∥
+ ∥Zφ(s∗, t∗)−Zφ(s, t∗)∥

≤ 2ε+
C

φ(L)
+ max

i∈{1,...,S}
∥Zφ(L)(si, t

∗)−Zφ(si, t
∗)∥,

by using (3.28) and the fact that s∗ ∈ {s1, . . . , sS}. Putting all the pieces together, we finally
obtain

∥Zφ(L)(s, t)−Zφ(s, t)∥ ≤ 4ε+
2C

φ(L)
+ max

i∈{1,...,S},j∈{1,...,T}
∥Zφ(L)(si, tj)−Zφ(si, tj)∥.

By taking L large enough, independent of s and t, the sum of the last two terms can be made
less than ε. Since ε is arbitrary, this concludes the proof.
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A consequence of this result is a simplified version for sequences of functions only indexed by L
and not k, as follows.

Corollary 3.11. Let I ⊆ R+ be an interval, and (ZL)L∈N∗ be a family of C1 functions from I
to Rp. Assume that there exist a constant C > 0 and a bounded integrable function b : I → R
such that, for any t ∈ I and L ∈ N∗, ∥ZL(t)∥ ≤ C and ∥dZL

dt (t)∥ ≤ b(t). Then there exist a
subsequence (Zφ(L))L∈N∗ of (ZL)L∈N∗ and a function Zφ : I → Rp such that Zφ(L)(t) tends to
Zφ(t) uniformly over t.

3.A.4 Consistency of the Euler scheme for parameterized ODEs

Proposition 3.12 (Consistency of the Euler scheme for parameterized ODEs.). We denote by
(θLk )L∈N∗,1≤k≤L be a bounded family of vectors of Rp, and let

ΘL : [0, 1]→ Rp, s 7→ θL⌊(L−1)s⌋+1.

Assume that there exists Θ : [0, 1]→ Rp a Lipschitz continuous function such that ΘL(s) tends to
Θ(s) uniformly over s. Let (aL)L∈N∗ be a sequence of vectors in some compact E ⊂ Rd converging
to a ∈ E. Let g : Rd × Rp → Rd be a C1 function such that g(0, ·) ≡ 0 and g(·, θ) is uniformly
Lipschitz continuous for θ in any compact of Rp. Consider the discrete scheme

uL0 = aL

uLk+1 = uLk +
1

L
g(uLk , θ

L
k+1), k ∈ {0, . . . , L− 1}.

(3.32)

Then uL⌊Ls⌋ tends to U(s) uniformly over s ∈ [0, 1], where U is the unique solution of the ODE

U(0) = a

dU

ds
(s) = g(U(s),Θ(s)), s ∈ [0, 1].

(3.33)

Moreover, the convergence only depends on the sequence (aL)L∈N∗ and on its limit a ∈ E through
(∥aL − a∥)L∈N∗.

Proof. Let M be a bound of the sequence (θLk )L∈N∗,1≤k≤L. By definition of ΘL, the sequence
(ΘL)L∈N∗ is also uniformly bounded by M , and the same is true for Θ. Then the function
g(·,Θ(s)) is uniformly Lipschitz for s ∈ [0, 1]. Furthermore, (U, s) 7→ g(U,Θ(s)) is continuous
in s because g and Θ are continuous. Thus the ODE (3.33) has a unique solution on [0, 1] by the
Picard-Lindelöf theorem (see Lemma 3.19).

Denote by C the uniform Lipschitz constant of g(·, θ) for ∥θ∥ ≤ M . Since g(0, ·) ≡ 0 and
g(·,Θ(s)) is C-Lipschitz, one has

∥∥∥dU
ds

(s)
∥∥∥ = ∥g(U(s),Θ(s))∥ ≤ C∥U(s)∥.

Therefore, by Grönwall’s inequality,

∥U(s)∥ ≤ ∥U(0)∥ exp(C) = ∥a∥ exp(C) ≤ DE exp(C),

where DE = supx∈E ∥x∥ <∞. A similar reasoning applies to the discrete scheme (3.32), using
the discrete version of Grönwall’s inequality. More precisely, for any k ∈ {0, . . . , L− 1},

∥uLk+1∥ ≤ ∥uLk ∥+
1

L
∥g(uLk , θLk+1)∥ ≤

(
1 +

C

L

)
∥uLk ∥.
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Thus,
∥uLk ∥ ≤ ∥uL0 ∥ exp(C) = ∥aL∥ exp(C) ≤ DE exp(C).

Overall, we can consider a restriction of g to a compact set depending only on M , C, and E,
which we will still denote by g with a slight abuse of notation.Since g is C1, it is therefore bounded
and Lipschitz continuous, and we still let C be its Lipschitz constant.

For L ∈ N∗ and k ∈ {0, . . . , L}, we denote by ∆L
k the gap between the continuous and the discrete

schemes, i.e.,

∆L
k =

∥∥∥U
( k
L

)
− uLk

∥∥∥.

The next step is to recursively bound the size of this gap, first observing that ∆L
0 = ∥aL − a∥.

We have that
s 7→ dU

ds
(s) = g(U(s),Θ(s)) (3.34)

is a Lipschitz continuous function with some Lipschitz constant C̃. To see this, just note
that U itself is Lipschitz continuous in s, since g is bounded, and therefore the function (3.34)
is a composition of Lipschitz continuous functions. In particular, dU

ds is almost everywhere
differentiable, and its derivative d2U

ds2
(s) is bounded in the supremum norm by C̃. As a consequence,

for k ∈ {0, . . . , L− 1}, the Taylor expansion of U on [ kL ,
k+1
L ] takes the form

U
(k + 1

L

)
= U

( k
L

)
+

1

L

dU

ds

( k
L

)
+

∫ (k+1)/L

k/L

(k + 1

L
− s
)d2U
ds2

(s)ds,

where the norm of the remainder term is less than C̃/L2. Therefore,

∆L
k+1 =

∥∥∥U
(k + 1

L

)
− uLk+1

∥∥∥

=
∥∥∥U
( k
L

)
+

1

L
g
(
U
( k
L

)
,Θ
( k
L

))
+

∫ (k+1)/L

k/L

(k + 1

L
− s
)d2U
ds2

(s)ds

− uLk −
1

L
g(uLk , θ

L
k+1)

∥∥∥

≤
∥∥∥U
( k
L

)
− uLk

∥∥∥+
∥∥∥ 1
L
g
(
U
( k
L

)
,Θ
( k
L

))
− 1

L
g(uLk , θ

L
k+1)

∥∥∥

+

∫ (k+1)/L

k/L

(k + 1

L
− s
)∥∥∥d

2U

ds2
(s)
∥∥∥ds

⩽ ∆L
k +

C

L
∆L

k +
C

L

∥∥∥Θ
( k
L

)
− θLk+1

∥∥∥+ C̃

L2
.

In the last inequality, we used the fact that g is C-Lipschitz. Since,by definition, θLk+1 = ΘL( k
L−1),

we obtain, for k ∈ {0, . . . , L− 1},

∆L
k+1 ⩽

(
1 +

C

L

)
∆L

k +
C

L

∥∥∥Θ
( k
L

)
−ΘL

( k

L− 1

)∥∥∥+ C̃

L2

⩽
(
1 +

C

L

)
∆L

k +
C

L
sup

s∈[0,1]
∥Θ(s)−ΘL(s)∥+ C

L

∥∥∥Θ
( k
L

)
−Θ

( k

L− 1

)∥∥∥+ C̃

L2

⩽
(
1 +

C

L

)
∆L

k +
C

L
sup

s∈[0,1]
∥Θ(s)−ΘL(s)∥+ CCΘ

L2
+
C̃

L2
,
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where CΘ is the Lipschitz constant of Θ. By the discrete Grönwall’s inequality, we deduce that,
for k ∈ {0, . . . , L− 1},

∆L
k+1 ⩽

(
∆L

0 + sup
s∈[0,1]

∥Θ(s)−ΘL(s)∥+ CΘ

L
+

C̃

LC

)
eC

=
(
∥aL − a∥+ sup

s∈[0,1]
∥Θ(s)−ΘL(s)∥+ CΘ

L
+

C̃

LC

)
eC . (3.35)

This shows that the gaps ∆L
k converge to zero uniformly over k ∈ {0, . . . , L} as L tends to infinity.

We conclude by observing that, for any s ∈ [0, 1],

∥U(s)− uL⌊Ls⌋∥ ⩽
∥∥∥U(s)− U

(⌊Ls⌋
L

)∥∥∥+
∥∥∥U
(⌊Ls⌋

L

)
− uL⌊Ls⌋

∥∥∥ ≤ CU

L
+∆L

⌊Ls⌋, (3.36)

where CU is the Lipschitz constant of U . Both terms converge to zero uniformly over s as L
tends to infinity. Finally, an inspection of our bounds shows that the convergence only depends
on (aL)L∈N∗ ∈ EN∗ through ∥aL − a∥.

The results of Proposition 3.12 can be extended without much effort to two other related cases.
First, the parameters θLk may depend on some other variable t, as long as all assumptions are
verified uniformly over t. Second, these parameters may converge to some limit parameters as
both L and t go to infinity. This is encapsulated in the following two corollaries.

Corollary 3.13. Let I ⊆ R+ be an interval. Let (θLk )L∈N∗,1≤k≤L be a uniformly bounded family
of functions from I to Rp, and let

ΘL : [0, 1]× I → Rp, (s, t) 7→ θL⌊(L−1)s⌋+1(t).

Assume that there exists a function Θ : [0, 1] × I → Rp such that ΘL(s, t) tends to Θ(s, t)
uniformly over s and t, and Θ(·, t) is uniformly Lipschitz continuous for t ∈ I. Let (aL)L∈N∗

be a family of functions from I to some compact E ⊂ Rd, uniformly converging to a : I → E.
Let g : Rd × Rp → Rd be a C1 function such that g(0, ·) ≡ 0 and g(·, θ) is uniformly Lipschitz
continuous for θ in any compact of Rp. Consider the discrete scheme, for t ∈ I,

uL0 (t) = aL(t)

uLk+1(t) = uLk (t) +
1

L
g(uLk (t), θ

L
k+1(t)), k ∈ {0, . . . , L− 1}.

Then uL⌊Ls⌋(t) tends to U(s, t) uniformly over s ∈ [0, 1] and t ∈ I, where U(·, t) is the unique
solution of the ODE

U(0, t) = a(t)

∂U

∂s
(s, t) = g(U(s, t),Θ(s, t)), s ∈ [0, 1].

Moreover, the convergence only depends on the sequence (aL)L∈N∗ and on its limit a ∈ EI through
(supt∈I ∥aL(t)− a(t)∥)L∈N∗.

Corollary 3.14. Let I ⊆ R+ be an interval. Let (θLk )L∈N∗,1≤k≤L be a uniformly bounded family
of functions from I to Rp, and let

ΘL : [0, 1]× R+ → Rp, (s, t) 7→ θL⌊(L−1)s⌋+1(t).
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Assume that there exists a function Θ∞ : [0, 1]→ Rp such that ΘL(s, t) tends to Θ∞(s) uniformly
over s as L, t→∞, and Θ∞ is Lipschitz continuous. Let (aL)L∈N∗ be a family of functions from
I to some compact E ⊂ Rd, and converging to a∞ ∈ E as L, t → ∞. Let g : Rd × Rp → Rd

be a C1 function such that g(0, ·) ≡ 0 and g(·, θ) is uniformly Lipschitz continuous for θ in any
compact of Rp. Consider the discrete scheme, for t ∈ I,

uL0 (t) = aL(t)

uLk+1(t) = uLk (t) +
1

L
g(uLk (t), θ

L
k+1(t)), k ∈ {0, . . . , L− 1}.

Then uL⌊Ls⌋(t) tends to U(s) uniformly over s ∈ [0, 1] as L, t→∞, where U is the unique solution
of the ODE

U(0) = a∞

dU

ds
(s) = g(U(s),Θ∞(s)), s ∈ [0, 1].

Moreover, the convergence only depends on the sequence (aL)L∈N∗ and on its limit a ∈ EI through
(supt∈I ∥aL(t)− a(t)∥)L∈N∗.

3.A.5 Large-depth convergence of the gradient flow

This section is devoted to proving the main result of Appendix 3.A, namely the large-depth
convergence of the gradient flow. The setting we consider encompasses both Section 3.4.1 (finite
training time and clipped gradient flow) and Section 3.4.2 (arbitrary training time and standard
gradient flow). To this end, we consider a training interval I = [0, T ] ⊆ R+, for T ≤ ∞, and
the gradient flow formulation (3.5), which is equivalent to the standard gradient flow (3.4) if π
equals the identity. Note that we do not need to assume in the following proof that π is bounded
(but only Lipschitz continuous). Therefore, the proof also holds in the case where π equals the
identity.

Theorem 3.15. Consider the residual network (3.12) initialized as explained in Appendix 3.A
and trained with the gradient flow (3.5) on I = [0, T ] ⊆ R+, for some T ∈ (0,∞]. Assume
that there exists a unique solution to the gradient flow, such that (AL)L∈N∗ and (BL)L∈N∗ each
satisfies the assumptions of Corollary 3.11, and (ZL

k )L∈N∗,1≤k≤L satisfies the assumptions of
Proposition 3.10. Then the following four statements hold as L tends to infinity:

(i) There exist functions A : I → Rq×d and B : I → Rd′×q such that AL(t) and BL(t) converge
uniformly over t ∈ I to A(t) and B(t).

(ii) There exists a Lipschitz continuous function Z : [0, 1]× I → Rp such that

ZL : [0, 1]× I → Rp, (s, t) 7→ ZL(s, t) = ZL
⌊(L−1)s⌋+1(t)

converges uniformly over s ∈ [0, 1] and t ∈ I to Z(s, t).
(iii) Uniformly over s ∈ [0, 1], t ∈ I, and x ∈ X , the hidden layer hL⌊Ls⌋(t) converges to the

solution at time s of the neural ODE

H(0, t) = A(t)x

∂H

∂s
(s, t) = f(H(s, t),Z(s, t)), s ∈ [0, 1].

(iv) Uniformly over t ∈ I and x ∈ X , the output FL(x; t) converges to B(t)H(1, t).
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Proof. According to Proposition 3.10, there exists a subsequence (Zφ(L))L∈N∗ of (ZL)L∈N∗ and
a Lipschitz continuous function Zφ : [0, 1] × I → Rp such that Zφ(L)(s, t) tends to Zφ(s, t)
uniformly over s and t. Similarly, by Corollary 3.11, there exists subsequences of (AL)L∈N∗

and (BL)L∈N∗ that converge uniformly. With a slight abuse of notation, we still denote these
subsequences by φ, and the corresponding limits by Aφ and Bφ.

In the remainder, we prove the uniqueness of the accumulation point (Zφ, Aφ, Bφ) by showing
that it is the solution of an ODE that satisfies the assumptions of the Picard-Lindelöf theorem.
The statements (i) to (iv) then follow easily.

Consider a general input (x, y) ∈ X × Y , and let HL(s, t) = hL⌊Ls⌋(t) (recall that hLk (t) is defined

by the forward propagation (3.12)). Corollary 3.13, with θLk = Z
φ(L)
k , Θ = Zφ, aL = Aφ(L)x,

g = f , ensures that Hφ(L)(s, t) converges uniformly (over s and t) to Hφ(s, t) that is the solution
at time s of the ODE

Hφ(0, t) = Aφ(t)x

∂Hφ

∂s
(s, t) = f(Hφ(s, t),Zφ(s, t)), s ∈ [0, 1].

By inspecting the proof of the corollary, we also have that (hφ(L)k )L∈N∗,1≤k≤φ(L) and (Hφ(L))L∈N∗

are uniformly bounded and that Hφ(·, t) is uniformly Lipschitz continuous for t ∈ I.

We now turn our attention to the backpropagation recurrence (3.13), which defines the backward
state pLk (t). First observe that the convergence of Hφ(L) implies that

p
φ(L)
φ(L)(t) = 2Bφ(L)(t)⊤(Bφ(L)(t)h

φ(L)
φ(L)(t)− y) = 2Bφ(L)(t)⊤(Bφ(L)(t)Hφ(L)(1, t)− y)

converges uniformly to 2Bφ(t)⊤(Bφ(t)Hφ(1, t)−y) ∈ Rd. Now, let PL(s, t) = pL⌊Ls⌋(t). We apply

again Corollary 3.13, this time to the backpropagation recurrence (3.13), with θLk = (h
φ(L)
k , Z

φ(L)
k ),

Θ = (Hφ,Zφ), g : (p, (h, Z)) 7→ ∂1f(h, Z)p, and aL = 2(Bφ(L))⊤(Bφ(L)Hφ(L)(1, ·)− y). Let us
quickly check that the conditions of the corollary are met:

• The sequence (h
φ(L)
k )L∈N∗,1≤k≤φ(L) is bounded, as noted previously, and the same holds for

(Z
φ(L)
k )L∈N∗,1≤k≤φ(L) by the assumptions of Theorem 3.15.

• The function Hφ(·, t) is uniformly Lipschitz continuous for t ∈ I, as noted previously, and
the same is true for Zφ(·, t) since Zφ is Lipschitz continuous.

• The function h
φ(L)
⌊(φ(L)−1)s⌋+1(t) tends to Hφ(s, t) uniformly over s and t, as seen in the

beginning of the proof. More precisely, we know that Hφ(L)(s, t) = h
φ(L)
⌊φ(L)s⌋(t) tends to

Hφ(s, t). Simple algebra and the fact that two successive iterates of (3.12) are separated
by a distance proportional to 1/L show that both statements are equivalent. Furthermore,
Zφ(L)(s, t) tends to Zφ(s, t) uniformly over s and t as noted above.

• The sequence (aL)L∈N∗ is uniformly bounded, since Bφ(L) and Hφ(L)(1, ·) are. It also
converges uniformly to a : t 7→ 2Bφ(t)⊤(Bφ(t)Hφ(1, t)− y).

• The function g is C1 since f is C2. We clearly have g(0, ·) ≡ 0. Finally, g(·, (h, Z)) is
uniformly Lipschitz continuous for (h, Z) in any compact since ∂1f is continuous.

Overall, we obtain that Pφ(L)(s, t) converges uniformly (over s and t) to Pφ(s, t), the solution at
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time s of the backward ODE

Pφ(1, t) = 2Bφ(t)⊤(Bφ(t)Hφ(1, t)− y)
∂Pφ

∂s
(s, t) = ∂1f(H

φ(s, t),Zφ(s, t))Pφ(s, t), s ∈ [0, 1].

Furthermore, the proof of the corollary shows that (Pφ(L))L∈N∗ is uniformly bounded. Now,
recall that the gradient flow for Zφ(L)

k (t), given by (3.5) and (3.15), takes the following form, for
t ∈ I and k ∈ {1, . . . , φ(L)},

∂Z
φ(L)
k (t)

∂t
= π

(
− 1

n

n∑

i=1

∂2f(h
φ(L)
k−1,i(t), Z

φ(L)
k (t))⊤p

φ(L)
k−1,i(t)

)
,

where the i subscript corresponds to the i-th input xi. By definition, for s ∈ [0, 1], Zφ(L)(s, t) =

Z
φ(L)
⌊(φ(L)−1)s⌋+1(t). Thus, the equation above can be rewritten, for s ∈ [0, 1] and t ∈ I,

∂Zφ(L)(s, t)

∂t
= π

(
− 1

n

n∑

i=1

∂2f(h
φ(L)
⌊(φ(L)−1)s⌋,i(t), Z

φ(L)
⌊(φ(L)−1)s⌋+1(t))

⊤p
φ(L)
⌊(φ(L)−1)s⌋,i(t)

)
. (3.37)

The term inside π can be rewritten as

− 1

n

n∑

i=1

∂2f
(
H

φ(L)
i

(⌊(φ(L)− 1)s⌋
φ(L)

, t
)
,Zφ(L)(s, t)

)⊤
P

φ(L)
i

(⌊(φ(L)− 1)s⌋
φ(L)

, t
)
.

Since f is C2, ∂2f is locally Lipschitz continuous. Applying the first part of the proof to the
specific case of xi, we know that Hφ(L)

i and Pφ(L)
i uniformly bounded, and that Hφ(L)

i (s, t) and
P

φ(L)
i (s, t) converge uniformly to Hφ

i (s, t) and Pφ
i (s, t). Therefore, the right-hand side of (3.37)

converges uniformly over s and t to

π
(
− 1

n

n∑

i=1

∂2f(H
φ
i (s, t),Zφ(s, t))⊤Pφ

i (s, t)
)
.

We have just shown the uniform convergence of the derivative in t of Zφ(L)(s, t). Furthermore,
we know that, for s ∈ [0, 1], the sequence (t 7→ Zφ(L)(s, t))L∈N∗ converges to Zφ(s, ·). These two
statements imply that Zφ is differentiable with respect to t and that, for s ∈ [0, 1], its derivative
satisfies the ordinary differential equation

∂Zφ(s, t)

∂t
= π

(
− 1

n

n∑

i=1

∂2f(H
φ
i (s, t),Zφ(s, t))⊤Pφ

i (s, t)
)
. (3.38)

Moreover, by our initialization scheme,

Zφ(s, 0) = Z init(s). (3.39)

A similar approach reveals that Aφ(t) and Bφ(t) are differentiable and that they verify the
equations

dAφ

dt
(t) = π

(
− 1

n

n∑

i=1

Pφ
i (0, t)x

⊤
i

)
, Aφ(0) = Ainit, (3.40)

dBφ

dt
(t) = π

(
− 2

n

n∑

i=1

(Bφ(t)Hφ
i (1, t)− yi)H

φ
i (1, t)

⊤
)
, Bφ(0) = Binit. (3.41)
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The equations (3.38) to (3.41) can be seen as an initial value problem whose variables are the
function Zφ(·, t) : [0, 1]→ Rp and the matrices Aφ(t) ∈ Rq×d, Bφ(t) ∈ Rd′×q. To complete the
proof, it remains to show, using the Picard-Lindelöf theorem (see Lemma 3.19), that there exists
a unique solution to this problem. First, note that the space B([0, 1],Rp) of bounded functions
from [0, 1] to Rp endowed with the supremum norm is a Banach space, which is the proper space
in which to apply the Picard-Lindelöf theorem. We therefore endow the space of parameters
B([0, 1],Rp)× Rq×d × Rd′×q with the norm

∥(Z, A,B)∥ := sup
s∈[0,1]

∥Z(s)∥+ ∥A∥2 + ∥B∥2,

which makes it a Banach space. We have to show that the mapping

(Z, A,B) 7→
(
s 7→ π

(
− 1

n

n∑

i=1

∂2f(Hi(s),Z(s))⊤Pi(s)
)
,

π
(
− 1

n

n∑

i=1

Pi(0)x
⊤
i

)
, π
(
− 2

n

n∑

i=1

(BHi(1)− yi)Hi(1)
⊤
)) (3.42)

is locally Lipschitz continuous with respect to this norm, where we recall that Hi(s) in (3.42) is
the solution at time s of the initial value problem

Hi(0) = Axi

dHi

ds
(s) = f(Hi(s),Z(s)), s ∈ [0, 1],

(3.43)

and Pi(s) is the solution at time s of the initial value problem

Pi(1) = 2B⊤(BHi(1)− yi)
dPi

ds
(s) = ∂1f(Hi(s),Z(s))Pi(s), s ∈ [0, 1].

(3.44)

To prove that the mapping (3.42) is locally Lipschitz continuous, we first check that it is well
defined. Since Z is assumed to be only bounded (and not continuous), the solutions of the initial
value problems (3.43) and (3.44) are well defined in the sense of the Caratheodory conditions,
which are given in Lemma 3.20.

Next, we can show that (Z, A,B) 7→ Hi is locally Lipschitz continuous for i ∈ {1, . . . , n}. To do
this, consider two sets of parameters (Z, A,B) and (Z̃, Ã, B̃) belonging to a compact set D. Let
Hi and H̃i denote the corresponding hidden states. As in the proof of Proposition 3.12, it holds
that Hi and H̃i belong to some compact set E that depends only on D and f . Let Kf be the
Lipschitz constant of the C1 function f on E ×D. Then,

∥H̃i(s)−Hi(s)∥ ≤ ∥H̃i(0)−Hi(0)∥+
∫ s

0

∥∥∥dH̃i

dr
(r)− dHi

dr
(r)
∥∥∥dr

≤ ∥H̃i(0)−Hi(0)∥+
∫ s

0
∥f(H̃i(r), Z̃(r))− f(Hi(r),Z(r))∥dr.

The norm inside the integral can be bounded by

∥f(H̃i(r), Z̃(r))− f(H̃i(r),Z(r))∥+ ∥f(H̃i(r),Z(r))− f(Hi(r),Z(r))∥
≤ Kf sup

r∈[0,1]
∥Z̃(r)−Z(r)∥+Kf∥H̃i(r)−Hi(r)∥.
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Therefore,

∥H̃i(s)−Hi(s)∥ ≤ ∥Ã−A∥2∥xi∥+Kf sup
r∈[0,1]

∥Z̃(r)−Z(r)∥+
∫ s

0
Kf∥H̃i(r)−Hi(r)∥dr.

Using Grönwall’s inequality, we obtain, for any s ∈ [0, 1],

∥H̃i(s)−Hi(s)∥ ≤
(
∥Ã−A∥2∥xi∥+Kf sup

r∈[0,1]
∥Z̃(r)−Z(r)∥

)
exp(Kf ).

This shows that the function (Z, A,B) 7→ Hi is locally Lipschitz continuous. One proves by
similar arguments that the function (Z, A,B) 7→ Pi is locally Lipschitz continuous. Thus, overall,
the mapping (3.42) is locally Lipschitz continuous as a composition of locally Lipschitz continuous
functions.

The Picard-Lindelöf theorem guarantees the uniqueness of the maximal solution of the initial value
problem (3.38)–(3.41) in the space B([0, 1],Rp)× Rd×q × Rd′×q. Since any accumulation point
(Zφ, Aφ, Bφ) is a solution belonging to this space, this proves the uniqueness of the accumulation
point, which we therefore denote as (Z, A,B).

The uniform convergence of (ZL, AL, BL) to (Z, A,B) is then easily shown by contradiction.
Suppose that uniform convergence does not hold. If this is true, then there exists a subsequence
that stays at distance ε > 0 from (Z, A,B) (in the sense of the uniform norm). Then arguments
similar to the beginning of the proof show the existence of a second accumulation point, which
is a contradiction. This shows the uniform convergence, yielding statements (i) and (ii) of the
theorem.

Finally, reapplying Corollary 3.13 with θLk = ZL
k , Θ = Z, aL = ALx, g = f , completes the proof

by proving statements (iii) and (iv).

Training dynamics of the limiting weights. Interestingly, the proof of Theorem 3.15
provides us with an explicit description of the evolution of the continuous-depth limiting weights
during training. With the notation of the proof, the continuous weights satisfy the training
dynamics:

dA

dt
(t) = π

(
− 1

n

n∑

i=1

Pi(0, t)x
⊤
i

)

∂Z
∂t

(s, t) = π
(
− 1

n

n∑

i=1

∂2f(Hi(s, t),Z(s, t))⊤Pi(s, t)
)

dB

dt
(t) = π

(
− 2

n

n∑

i=1

(B(t)Hi(1, t)− yi)Hi(1, t)
⊤
)
,

where we recall that Hi(s, t) is the solution at time s of the initial value problem

Hi(0, t) = A(t)xi

∂Hi

∂s
(s, t) = f(Hi(s, t),Z(s, t)), s ∈ [0, 1],

and Pi(s, t) is the solution at time s of the problem

Pi(1, t) = 2B(t)⊤(B(t)Hi(1, t)− yi)
∂Pi

∂s
(s, t) = ∂1f(Hi(s, t),Z(s, t))Pi(s, t), s ∈ [0, 1].

These equations can be thought of as the continuous-depth equivalent of the backpropagation
equations.
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3.A.6 Existence of the double limit when L, t tend to infinity

Proposition 3.16. Consider the residual network (3.12), and assume that:

(i) AL(t), ZL
⌊Ls⌋(t), and BL(t) converge uniformly over L ∈ N∗ and s ∈ [0, 1] as t→∞.

(ii) AL(t), ZL
⌊Ls⌋(t), and BL(t) converge uniformly over t ∈ R+ and s ∈ [0, 1] as L→∞.

(iii) The loss ℓL(t) converges to 0 uniformly over L ∈ N∗ as t→∞.

Then the following four statements hold as t and L tend to infinity:

(i) There exist matrices A∞ ∈ Rq×d and B∞ ∈ Rd′×q such that AL(t) and BL(t) converge to
A∞ and B∞.

(ii) There exists a Lipschitz continuous function Z∞ : [0, 1]→ Rp such that ZL
⌊Ls⌋(t) converges

to Z∞(t) uniformly over s ∈ [0, 1].

(iii) Uniformly over s ∈ [0, 1] and x ∈ X , the hidden layer hL⌊Ls⌋(t) converges to the solution at
time s of the ODE

H(0) = A∞x

dH

ds
(s) = f(H(s),Z∞(s)), s ∈ [0, 1].

(3.45)

(iv) Uniformly over x ∈ X , the output FL(x; t) converges to F∞(x) = B∞H(1). Furthermore,
F∞(xi) = yi for i ∈ {1, . . . , n}.

Proof. The existence of limits A∞ and B∞ to AL(t) and BL(t) as L and t tend to infinity is
given by Lemma 3.22. The same argument applies to ZL

⌊sL⌋(t), which provides a limit Z∞(s) to
the sequence. Furthermore, following the proof of the lemma, we see that the convergence of
ZL
⌊sL⌋(t) to Z∞(s) is uniform over s ∈ [0, 1]. Corollary 3.14, applied with θLk = ZL

k , Θ∞ = Z∞,
aL = ALx, g = f , then ensures that hL⌊Ls⌋(t) converges uniformly (over s ∈ [0, 1] and x ∈ X )
to H(s) that is the solution at time s of (3.45), as L and t tend to infinity. As a consequence,
FL(x; t) converges uniformly over x to F∞(x) as L, t→∞. Furthermore, recall that

ℓL(t) =
1

n

n∑

i=1

∥FL(xi; t)− yi∥22.

The left-hand side converges as L, t → ∞ to 0 by assumption of the proposition, while the
right-hand side converges to

1

n

n∑

i=1

∥F∞(xi)− yi∥22.

Therefore, F∞(xi) = yi for i ∈ {1, . . . , n}, and the proof is complete.

3.B Proofs of the results of the main part of the chapter

Most of the results follow from those presented in Section 3.A. The only substantial proof is that
of Proposition 3.6, which shows the local PL condition. It uses a result of Nguyen and Mondelli
(2020) involving the Hermite transform and the sub-Gaussian variance proxy, which we define
briefly. We refer to Debnath and Bhatta (2014, Chapter 17) and Vershynin (2018, Sections 2.5.2
and 3.4.1), respectively, for more detailed explanations.
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Hermite transform. The r-th normalized probabilist’s Hermite polynomial is given by

hr(x) =
1√
r!
(−1)rex2/2 d

r

dxr
e−x2/2, r ≥ 0.

This family of polynomials forms an orthonormal basis of square-integrable functions for the
inner product

⟨f1, f2⟩ =
1√
2π

∫ ∞

−∞
f1(x)f2(x)e

−x2/2dx.

Therefore, any function σ such that 1√
2π

∫∞
−∞ σ2(x)e−x2/2dx < ∞ can be decomposed on this

basis. The r-th coefficient of this decomposition is denoted by ηr(σ).

Sub-Gaussian random vector. A random vector x ∈ Rd is sub-Gaussian with variance proxy
vx > 0 if, for every y ∈ Rd of unit norm,

P(|⟨x, y⟩| ≥ t) ≤ 2 exp
(
− t2

2v2x

)
.

Additional notation. For a matrix A, we let smin and smax its minimum and maximum
singular values, and similarly, λmin and λmax its minimum and maximum eigenvalues (whenever
they exist).

Before delving into the proofs, we briefly describe the parts of this section that make use of
the specific model (3.3). The most important one is the proof of Proposition 3.6, i.e., the proof
that the residual network satisfies the (M,µ)-local PL condition. Additionally, in the proof
of Proposition 3.3, the expressions for M and K are valid only for the specific model (3.3).
Finally, in the proof of Theorem 3.7, the beginning of the proof reveals that condition (3.22)
of Proposition 3.9 on µ can be expressed as a condition on the norm of the labels yi. This
applies only to the specific model (3.3). Observe that, if one assumes that the general residual
network of Section 3.A satisfies the (M,µ)-local PL condition with µ given by (3.22), then the
rest of the proof of Theorem 3.7 unfolds, and the conclusions of the theorem hold for the general
model.

3.B.1 Proof of Proposition 3.1

Proposition 3.1 is a consequence of Proposition 3.8 with f(h, (V,W )) = 1√
m
V σ( 1√

qWh).

3.B.2 Proof of Proposition 3.2

Proposition 3.12, with θLk = (V L
k ,W

L
k ), Θ = (V,W), aL = Ax, g(h, (V,W )) = 1√

m
V σ( 1√

qWh),
gives the existence and uniqueness of the solution of the neural ODE (3.6). Moreover, inspecting
the proof of Proposition 3.12, equations (3.35) gives that, for any input x ∈ X , the difference
between the last hidden layer hLL of the discrete residual network (3.3) and its continuous
counterpart H(1) in the neural ODE (3.6) is bounded by

C ′
( 1
L

+ sup
s∈[0,1]

∥Θ(s)−ΘL(s)∥
)
,

where C ′ > 0 is independent of L and x ∈ X , and ΘL(s) = θL⌊(L−1)s⌋+1. The function ΘL is a
piecewise-constant interpolation of Θ with pieces of length 1

L−1 . Since Θ is Lipschitz continuous,
the distance between Θ and ΘL decreases as C′′/L for some C ′′ > 0 depending on Θ but not on L.
This yields ∥hLL −H(1)∥ ≤ C′(1++C′′)

L , where C ′ and C ′′ are independent of L and x ∈ X . Since
FL(x) = BhLL and F (x) = BH(1), the result is proven.
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3.B.3 Proof of Proposition 3.3

We apply Proposition 3.8 with f(h, (V,W )) = 1√
m
V σ( 1√

qWh). Recall that the parameters
Z = (V,W ) are considered in Proposition 3.8 as a vector. In particular, ∥Z∥ = ∥V ∥F + ∥W∥F .
Therefore, Proposition 3.8 shows that, for t ∈ [0, T ], L ∈ N∗, and k ∈ {1, . . . , L},

∥AL(t)∥F ≤M, ∥V L
k (t)∥F + ∥WL

k (t)∥F ≤M, and ∥BL(t)∥F ≤M,

where

M =M0 + TMπ

M0 = max
(
∥AL(0)∥F , ∥V L

0 (0)∥F + ∥WL
0 (0)∥F , ∥BL(0)∥F

)

Mπ = max
(

max
A∈Rq×d

∥π(A)∥F , max
Z∈Rq×m×Rm×q

∥π(Z)∥, max
B∈Rd′×q

∥π(B)∥F
)
.

Furthermore, due to our initialization scheme described in Section 3.3,

∥AL(0)∥F =
√
d, ∥V L

0 (0)∥F = 0, ∥WL
0 (0)∥F ≤ 2

√
qm, ∥BL(0)∥F =

√
d′,

where the third inequality holds with probability at least 1−exp(−3qm
16 ) by Lemma 3.23. Since we

take q ≥ max(d, d′), this implies that, with high probability, M0 ≤ 2
√
qm, yielding the formula

for M in Proposition 3.3. Finally, the existence of K = βTeαT such that the difference between
two successive weight matrices is bounded by K/L, as well as the dependence of α and β on X ,
Y, M , and σ, follows easily from Proposition 3.8, given that our initialization scheme ensures
that ZL

k (0) = ZL
k+1(0) for all L ∈ N∗ and k ∈ {1, . . . , L}.

3.B.4 Proof of Theorem 3.4

By Proposition 3.3 and the fact that π is bounded, the sequences (AL)L∈N∗ and (BL)L∈N∗

each satisfy the assumptions of Corollary 3.11, and (ZL
k )L∈N∗,1≤k≤L satisfies the assumptions of

Proposition 3.10. Theorem 3.4 then follows directly from Theorem 3.15, by taking, as previously,
f(h, (V,W )) = 1√

m
V σ( 1√

qWh).

3.B.5 Proof of Proposition 3.6

We drop the L superscripts for this proof, since L is fixed. Denote by Ā, B̄, V̄k, W̄k parameters
sampled according to the initialization scheme of Section 3.3, which means in particular that
V̄k = 0 and W̄k = W̄ ∼ N⊗(m×q). Since, by assumption, the activation function σ is bounded
and not constant, it cannot be a polynomial function. As a consequence, there are infinitely
many non-zero coefficients ηr(σ) in its Hermite expansion (defined at the beginning of Section
3.B). Throughout, we let r ≥ 2 be an integer such that ηr(σ) is nonzero. We also let Kσ be the
Lipschitz constant of σ and Mσ its supremum norm. Now, let A,B, Vk,Wk be parameters at
distance at most M = min( ηr(σ)

32Kσ
√
2nq

, 12) from Ā, B̄, V̄k, W̄k in the sense of Definition 3.5.

It is useful for this proof to introduce a matrix-valued version of the residual network (3.3). More
specifically, given data matrices x ∈ Rd×n and y ∈ Rd′×n, the matrix-valued residual network
writes

h0 = Ax

hk+1 = hk +
1

L
√
m
Vk+1σ

( 1√
q
Wk+1hk

)
, k ∈ {0, . . . , L− 1}, (3.46)
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where now hk ∈ Rq×n. The loss is equal to ℓ = 1
n∥BhL − y∥2F and we let pk = ∂ℓ

∂hk
∈ Rq×n

be the matrix-valued backward state. Observe that the columns of x are bounded and thus
sub-Gaussian. In the sequel, we denote by vx the sub-Gaussian variance proxy of the columns of√

d/qx.

Now that we have introduced the necessary notation, we can proceed to prove some preliminary
estimates. Since M ≤ 1

2 ≤
√
2qm, we have, for k ∈ {1, . . . , n},

∥A− Ā∥F ≤M, ∥B − B̄∥F ≤
1

2
, ∥Vk∥F ≤ 1, ∥Wk − W̄∥F ≤

1

2
≤
√
2qm. (3.47)

By Lemma 3.23, with probability at least 1− exp
(
− qm

16

)
, one has ∥W̄∥F ≤

√
2qm. Together

with the previous inequalities, this implies

∥A∥2 ≤ 2, smin(B) ≥ 1

2
, ∥B∥2 ≤

3

2
, ∥Vk∥F ≤ 1, ∥Wk∥F ≤ 2

√
2qm, (3.48)

where the second inequality is a consequence of Lemma 3.21, as follows:

smin(B) ≥ smin(B̄)− ∥B − B̄∥F = 1− ∥B − B̄∥F ≥
1

2
.

Let us now bound ∥hk∥F and ∥pk∥F . We have

∥h0∥F = ∥Ax∥F ≤ ∥A∥2∥x∥F ≤ 2
√
qn. (3.49)

Moreover, by (3.46), for any k ∈ {0, . . . , L− 1},

∥hk+1∥F ≤ ∥hk∥F +
Kσ

L
√
m
√
q
∥Vk+1∥F ∥Wk+1∥F ∥hk∥F ≤

(
1 +

2
√
2Kσ

L

)
∥hk∥F ,

where the second inequality is a consequence of (3.48). Therefore, by (3.49),

∥hk∥F ≤ exp(2
√
2Kσ)∥h0∥F ≤ 2 exp(2

√
2Kσ)

√
qn. (3.50)

Moving on to ∥pk∥F , the chain rule leads to

pk = pk+1 +
1

L
√
qm

W⊤
k+1

(
(V ⊤

k+1pk+1)⊙ σ′
( 1√

q
Wk+1hk

))
, k ∈ {0, . . . , L− 1},

where ⊙ denotes the element-wise product. Noting that |σ′| ≤ Kσ and using (3.48), we
obtain

∥pk∥F ≥ ∥pk+1∥F −
Kσ

L
√
qm
∥Wk+1∥F ∥Vk+1∥F ∥pk+1∥F ≥

(
1− 2

√
2Kσ

L

)
∥pk+1∥F .

It follows that ∥pk∥F ≥ exp(−2
√
2Kσ)∥pL∥F . In addition,

pL =
∂ℓ

∂hL
=

2

n
B⊤(BhL − y).

Therefore, by Lemma 3.21, since d′ ≤ q,

∥pL∥F ≥
2

n
smin(B)∥BhL − y∥F ≥

1√
n

√
ℓ.
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Collecting bounds, we conclude that, for k ∈ {0, . . . , L},

∥pk∥F ≥
1√
n
exp(−2

√
2Kσ)

√
ℓ. (3.51)

A similar proof reveals that, for k ∈ {0, . . . , L},

∥pk∥F ≤
3√
n
exp(2

√
2Kσ)

√
ℓ.

Having established these preliminary estimates, our goal in the remainder of the proof is to lower
bound the quantity ∥ ∂ℓ

∂Vk+1
∥F . First note that, by the chain rule, for any k ∈ {0, . . . , L−1},

∂ℓ

∂Vk+1
=

1

L
√
m
pk+1σ

( 1√
q
Wk+1hk

)⊤
.

As a consequence, when m ≥ n, by Lemma 3.21,
∥∥∥ ∂ℓ

∂Vk+1

∥∥∥
F
≥ 1

L
√
m
∥pk+1∥F · smin

(
σ
( 1√

q
Wk+1hk

))

≥ 1

L
√
mn

exp(−2
√
2Kσ)

√
ℓ · smin

(
σ
( 1√

q
Wk+1hk

))
, (3.52)

using (3.51). Next, by Lemma 3.21,

smin

(
σ
( 1√

q
Wk+1hk

))
≥ smin

(
σ
( 1√

q
W̄ Āx

))
−
∥∥∥σ
( 1√

q
Wk+1hk

)
− σ

( 1√
q
W̄ Āx

)∥∥∥
F
.

Let us first lower bound the first term. Since, by our choice of initialization, Ā = (IRd×d , 0R(q−d)×d),
we have

smin

(
σ
( 1√

q
W̄ Āx

))
= smin(σ(W̃ x̃)),

where W̃ ∼ N (0, 1)⊗(m×d) and x̃ = 1√
qx ∈ Rd×n has i.i.d. unitary columns independent of W̃ .

Therefore, by Lemma 3.24, with probability at least 1−exp
(
− 3mη2r(σ)

64M2
σn

)
−2n2 exp

(
− d

2vxn2/r

)
,

smin

(
σ
( 1√

q
WĀx

))
≥
√
mηr(σ)

4
.

Next,
∥∥∥σ
( 1√

q
Wk+1hk

)
− σ

( 1√
q
W̄ Āx

)∥∥∥
F
≤ Kσ√

q

(
∥Wk+1 − W̄∥F ∥hk∥F + ∥W̄∥F ∥hk −Ax∥F

+ ∥W̄∥F ∥Ax− Āx∥F
)
.

Clearly,

∥hk −Ax∥F =
∥∥∥

k∑

j=1

1

L
√
m
Vjσ

( 1√
q
Wjhj−1

)∥∥∥
F
≤ 4
√
2Kσk

L
exp(2

√
2Kσ)

√
qn,

by (3.48) and (3.50). Also,

∥Ax− Āx∥F ≤ ∥A− Ā∥F ∥x∥F ≤
ηr(σ)

32
√
2Kσ

,
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by (3.47) and by definition of M . Putting together the two bounds above as well as (3.47), (3.48),
and (3.50), we obtain
∥∥∥σ
( 1√

q
Wk+1hk

)
− σ

( 1√
q
WĀx

)∥∥∥
F
≤ Kσ exp(2

√
2Kσ)

√
n
(
1 +
√
qm

8Kσk

L

)
+
√
m
ηr(σ)

32

≤ C1

√
n+ C2

√
nqmk

16L
+
√
m
ηr(σ)

32
,

where C1 = Kσ exp(2
√
2Kσ) and C2 = 128C1Kσ. Thus, when C1

√
n ≤ 1

32

√
mηr(σ), we

have
smin

(
σ
( 1√

q
Wk+1hk

))
≥ √m

( 3

16
ηr(σ)−

C2

16

√
nq
k

L

)
≥ 1

8

√
mηr(σ)

for k ≤ Lηr(σ)
C2

√
nq . As a consequence, for k ≤ Lηr(σ)

C2
√
nq , returning to (3.52),

∥∥∥ ∂ℓ

∂Vk+1

∥∥∥
F
≥ 1

8L
√
n
ηr(σ) exp(−2

√
2Kσ)

√
ℓ =

C3ηr(σ)

L
√
n

√
ℓ,

letting C3 =
exp(−2

√
2Kσ)

8 . Therefore,

∥∥∥ ∂ℓ
∂A

∥∥∥
2

F
+ L

L∑

k=1

∥∥∥ ∂ℓ

∂Zk+1

∥∥∥
2

F
+
∥∥∥ ∂ℓ
∂B

∥∥∥
2

F
≥ L

⌊
Lηr(σ)
C2

√
nq

⌋
∑

k=1

∥∥∥ ∂ℓ

∂Vk+1

∥∥∥
2

F

≥ L
⌊Lηr(σ)
C2
√
nq

⌋C2
3ηr(σ)

2

L2n
ℓ

≥ C2
3ηr(σ)

3

2C2n
√
nq
ℓ,

where we used the inequality ⌊x⌋ ≥ x/2 for x ≥ 1. This proves the result, with

c1 = max
( 210C2

1

ηr(σ)2
, 1
)
= max

(210K2
σ exp(4

√
2Kσ)

ηr(σ)2
, 1
)

c2 =
C2

ηr(σ)
=

128K2
σ exp(2

√
2Kσ)

ηr(σ)

c3 = min
( ηr(σ)

32
√
2Kσ

,
1

2

)

c4 =
C2
3ηr(σ)

3

2C2
=

ηr(σ)
3

214K2
σ exp(6

√
2Kσ)

δ = exp
(
− qm

16

)
+ n exp

(
− 3mη2r (σ)

64M2
σn

)
+ 2n2 exp

(
− d

2vxn2/r

)
.

Remark 3.17. With appropriate values of r and m, the probability of failure δ can be made as
small as

ε+ 2n2 exp
(
− d

2vxnε

)
, (3.53)

for any ε > 0. This is possible first by choosing r such that 2/r ≥ ε, then by choosing m such that
the first two terms are less than ε. Moreover, we refer the interested reader to Goel et al. (2020,
Lemmas A.2 and A.9) for quantitative estimates of ηr(σ) for ReLU and sigmoid activations.
Finally, the expression (3.53) is essentially the same as the one appearing in Nguyen and Mondelli
(2020, Theorem 3.3). As in this chapter, we note that this expression is small if n grows at most
polynomially with d, in which case the exponential term in d dominates the polynomial term in n.
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3.B.6 Proof of Theorem 3.7

By Proposition 3.6, there exists δ > 0 such that, with probability at least 1 − δ, the residual
network (3.3) satisfies the (M,µ)-local PL condition around its initialization, with

M =
c3√
nq

and µ =
c4

n
√
nq
,

for c3 and c4 depending on σ. We now apply Proposition 3.9 with f(h, (V,W )) = 1√
m
V σ( 1√

qWh).
The only assumption of Proposition 3.9 that requires some care to check is that the PL condition
holds for the value of µ given by equation (3.22). Since the (M,µ)-local PL condition implies
the (M, µ̃)-local PL condition for any µ̃ ∈ (0, µ), it is the case if

c4
n
√
nq
≥ max(MBK,MBMX ,MAMX)

8eK

M
sup
L∈N∗

√
ℓL(0),

with MX , MA, MB, and K defined in Proposition 3.9. Due to the initialization scheme of
Section 3.3, we have, for any input x ∈ X , hLL(0) = hL0 (0), hence FL(x) = BL(0)AL(0)x = 0 since
q ≥ d+ d′. As a consequence, ℓL(0) = 1

n

∑n
i=1 ∥yi∥2. Therefore, the condition becomes

1

n

n∑

i=1

∥yi∥2 ≤
c23c

2
4

64n4q3max(MBK,MBMX ,MAMX)2e2K
,

where we replaced M by its value. Define C to be equal to the constant on the right-hand
side. Then, according to the above, as soon as 1

n

∑n
i=1 ∥yi∥2 ≤ C, we can apply Proposition

3.9, which gives several guarantees. First, the gradient flow is well defined on R+. Moreover,
the proposition and the expression of µ given above yield the bound on the empirical risk. In
particular, the empirical risk converges uniformly to zero. Furthermore, Proposition 3.9 shows the
uniform convergence of the weights as t→∞. Finally, the proposition ensures that the sequences
(AL)L∈N∗ and (BL)L∈N∗ each satisfy the assumptions of Corollary 3.11, and that (ZL

k )L∈N∗,1≤k≤L

satisfies the assumptions of Proposition 3.10. We can therefore apply Theorem 3.15, with f defined
above and π equal to the identity. This gives the uniform convergence of the weights as L→∞.
The four asymptotic statements of Theorem 3.7 are then a consequence of Proposition 3.16.

Remark 3.18. A close examination of the quantities involved in the definition of C reveals
that it depends only on X , σ, n, and q. In particular, it does not depend on the dimension m.

3.C Some technical lemmas

We start by recalling the Picard-Lindelöf theorem (see, e.g., Luk, 2017, for a self-contained
presentation, and Arnold, 1992, for a textbook).

Lemma 3.19 (Picard-Lindelöf theorem). Let I = [0, T ] ⊂ R+ be an interval, for some T ∈ (0,∞].
Consider the initial value problem

U(s) = U0 +

∫ s

0
g(U(r), r)dr, s ∈ I, (3.54)

where g : Rd × I → Rd is continuous and locally Lipschitz continuous in its first variable. Then
the initial value problem is well defined on an interval [0, Tmax) ⊂ I, i.e., there exists a unique
maximal solution on this interval. Moreover, if Tmax < T , then ∥U(s)∥ tends to infinity when s
tends to Tmax. Finally, if g(·, r) is uniformly Lipschitz continuous for r in any compact, then
Tmax = T .
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We define time-dependent dynamics (3.54) for generality, but the time-independent case U(s) =
U0 +

∫ s
0 g(U(r))dr is also of interest. In this case, the existence and uniqueness of the maximal

solution holds if g is locally Lipschitz continuous, and the solution is defined on I if g is Lipschitz
continuous. Besides, the first statement of Lemma 3.19 (existence and uniqueness of the maximal
solution) also holds if Rd is replaced by any (potentially infinite-dimensional) Banach space.

The next lemma gives conditions for the existence and uniqueness of the global solution of the
initial value problem (3.54) when the assumption of continuity of g in its second variable is
removed, thereby generalizing the Picard-Lindelöf theorem.

Lemma 3.20 (Caratheodory conditions for the existence and uniqueness of the global solution
of an initial value problem). Consider the initial value problem

U(s) = U0 +

∫ s

0
g(U(r), r)dr, s ∈ [0, 1],

where g : Rd × [0, 1]→ Rd is measurable and the integral is understood in the sense of Lebesgue
integration. Assume that g(·, r) is uniformly Lipschitz continuous for almost all r ∈ [0, 1], and
that g(0, r) ≡ 0. Then there exists a unique solution to the initial value problem, defined on [0, 1].

Proof. The proof is a consequence of Filippov (1988, Theorems 1, 2, and 4). More specifically,
denote by C > 0 the uniform Lipschitz constant of g(·, r). According to Filippov (1988, Theorems
1 and 2), under the conditions of the lemma, there exists a unique maximal solution to the initial
value problem. Let us now consider a restricted version of the problem, where g is defined on
D × [0, 1], with D a compact of Rd large enough to contain in its interior the ball of center 0
and radius ∥U0∥ exp(C). There exists a unique maximal solution to this problem as well, also
according to Filippov (1988, Theorems 1 and 2), and, according to Filippov (1988, Theorem 4),
it is defined until it reaches the boundary of D × [0, 1], which it reaches at some point (U∗, s∗).
If s∗ < 1, it means that U∗ is on the boundary of D, and in particular that ∥U∗∥ > ∥U0∥ exp(C).
But, on the other hand, for almost every r ∈ [0, 1],

∥g(U(r), r)∥ ≤ ∥g(0, r)∥+ ∥g(U(r), r)− g(0, r)∥ ≤ C∥U(r)∥.

Hence, by Grönwall’s inequality, for s ≤ s∗,

∥U(s)∥ ≤ ∥U0∥ exp(C).

Thus, ∥U∗∥ ≤ ∥U0∥ exp(C), which is impossible. Hence the maximal solution of the restricted
problem is defined on [0, 1]. Furthermore, the maximal solution of the original problem coincides
with the restricted one whenever U(s) ∈ D, which is the case for every s ∈ [0, 1], hence the
maximal solution is defined on [0, 1].

The next three lemmas recall well-known results from linear algebra, analysis, and random matrix
theory. Recall that smin and λmin denote respectively the minimum singular value and eigenvalue
of a matrix.

Lemma 3.21. Let A,A′ ∈ Rm×r and B ∈ Rr×n. Then

smin(A+A′) ≥ smin(A)− ∥A′∥F .

If m ≥ r, then ∥AB∥F ≥ smin(A)∥B∥F . Furthermore, if n ≥ r, then ∥AB∥F ≥ ∥A∥F smin(B).
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Proof. The first statement is a consequence of, e.g., Loyka (2015), which establishes that
smin(A+A′) ≥ smin(A)− smax(A

′), yielding the first inequality since smax(A
′) = ∥A∥2 ≤ ∥A∥F .

As for the second one, we have

∥AB∥2F = Tr(ABB⊤A⊤) = Tr(BB⊤A⊤A) ≥ λmin(A
⊤A)Tr(BB⊤) = λmin(A

⊤A)∥B∥2F .

Since m ≥ r, the rightmost quantity is equal to smin(A)∥B∥F , proving the second statement of
the lemma. The third statement is similar.

Lemma 3.22. Let (ex,y)x∈R+,y∈R+ ⊂ E, where E is a Banach space, such that ex,y converges
uniformly to e∞,y when x → ∞, and converges uniformly to ex,∞ when y → ∞. Then there
exists e∞ ∈ E such that

lim
x,y→∞

ex,y = lim
x→∞

ex,∞ = lim
y→∞

e∞,y = e∞.

Proof. Let ε > 0. Since ex,y converges uniformly to e∞,y as x→∞, there exists x0 ∈ R+ such
that, for x1, x2 > x0 and y ∈ R+,

∥ex1,y − ex2,y∥ ≤
ε

2
.

Similarly, there exists y0 ∈ R+ such that, for x ∈ R+ and y1, y2 > y0,

∥ex,y1 − ex,y2∥ ≤
ε

2
.

Hence, for x1, x2 > x0 and y1, y2 > y0,

∥ex1,y1 − ex2,y2∥ ≤ ∥ex1,y1 − ex1,y2∥+ ∥ex1,y2 − ex2,y2∥ ≤ ε.

We conclude that (ex,y)x∈R+,y∈R+ is a Cauchy sequence, which therefore converges to some limit
e∞ ∈ E.

Lemma 3.23. Let W ∈ Rq×m be a standard Gaussian random matrix. Then, for MW ⩾
√
2,

with probability at least 1− exp(− (M2
W−1)qm
16 ), one has ∥W∥F ≤MW

√
q
√
m.

Proof. The quantity ∥W∥2F follows a chi-squared distribution with qm degrees of freedom. Hence,
according to Laurent and Massart (2000, Lemma 1), for x ≥ 0,

P(∥W∥2F − qm ≥ 2
√
qmx+ 2x) ≤ exp(−x).

Taking x =
(M2

W−1)qm
16 , we see that

2
√
qmx =

1

2

√
M2

W − 1qm ≤ 1

2
(M2

W − 1)qm,

where the bound follows from MW ⩾
√
2. Since furthermore 2x ≤ 1

2(M
2
W − 1)qm, we obtain

2
√
qmx+ 2x ≤ (M2

W − 1)qm,

and thus
P(∥W∥2F > M2

W qm) ≤ P(∥W∥2F − qm ≥ 2
√
qmx+ 2x) ≤ exp(−x),

yielding the result.
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Finally, the last lemma of the section gives a lower bound on the smallest singular value of a
matrix of the form σ(A), where σ is a bounded function applied element-wise and A belongs
to a family of random matrix. The lower bound involves the Hermite transform of σ, which is
defined in Section 3.B.

Lemma 3.24. Let σ be a function bounded by some Mσ > 0. Let W ∈ Rm×d be a standard
Gaussian random matrix, and X ∈ Rd×n a random matrix with i.i.d. unitary columns independent
of W . Then, for any integer r ≥ 2, there exists δ > 0 such that, with probability at least 1− δ, the
smallest singular value of σ(WX) is greater than 1

4

√
mηr(σ), where ηr(σ) is the r-th coefficient

in the Hermite transform of σ. Furthermore, the following expression for δ holds:

δ = n exp
(
− 3mη2r (σ)

64M2
σn

)
+ 2n2 exp

(
− d

2Cn2/r

)
,

where C is the sub-Gaussian variance proxy of the columns of
√
dX.

Proof. Denoting by wi the i-th row of W and letting

Mi = σ(X⊤w⊤
i )σ(wiX),

our goal is to lower bound the smallest eigenvalue value λmin(M) of M =
∑m

i=1Mi. Observe that

E(M |X) = mEw̃∼N (0,Id)

(
σ(X⊤w̃⊤)σ(w̃X)

∣∣∣X
)

= mEw̃∼N (0, 1
d
Id)

(
σ
(
(
√
dX)⊤w̃⊤)σ

(
w̃(
√
dX)

)∣∣∣X
)
.

Letting λmin(E(M |X)) be the smallest eigenvalue of this matrix and r ≥ 2 be an integer, Nguyen
and Mondelli (2020, Lemma 3.4) show that, with probability at least 1− 2n2 exp(− d

2Cn2/r ) over
the matrix X,

λmin(E(M |X)) ≥ mη2r (σ)

8
. (3.55)

We now apply a matrix Chernoff’s bound to lower bound with high probability the smallest
eigenvalue λmin(M |X) of M conditionally on X, as a function of λmin(E(M |X)). By Tropp
(2012, Remark 5.3), we have, for t ∈ [0, 1],

P(λmin(M) ≤ tλmin(E(M |X))|X) ≤ n exp
(
− (1− t2)λmin(E(M |X))

2R(X)

)
,

where R(X) is an almost sure upper bound on the largest eigenvalue of Mi|X, which we can take
equal to M2

σn since the largest eigenvalue of Mi is equal to ∥σ(wiX)∥22 ≤M2
σn. Taking t = 1/2,

we obtain, on the event [λmin(E(M |X)) ≥ mη2r(σ)
8 ],

P
(
λmin(M) ≥ λmin(E(M |X))

2

∣∣∣X
)
≥ 1− n exp

(
− 3mη2r (σ)

64M2
σn

)
,

thus, on the event [λmin(E(M |X)) ≥ mη2r(σ)
8 ],

P
(
λmin(M) ≥ mη2r (σ)

16

)
≥ 1− n exp

(
− 3mη2r (σ)

64M2
σn

)
.
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Using (3.55), we obtain

P
(
λmin(M) ≥ mη2r (σ)

16

)
≥
(
1− n exp

(
− 3mη2r (σ)

64M2
σn

))
P
(
λmin(E(M |X)) ≥ mη2r (σ)

8

)

≥
(
1− n exp

(
− 3mη2r (σ)

64M2
σn

))(
1− 2n2 exp

(
− d

Cn2/r

))

≥ 1− n exp
(
− 3mη2r (σ)

64M2
σn

)
− 2n2 exp

(
− d

2Cn2/r

)
.

3.D Counter-example for the ReLU case.

This section gives a proof sketch to illustrate that, with the ReLU activation σ : x 7→ max(0, x),
the smoothness of the weights can be lost during training. More precisely, we show a case where
successive weights are at distance O( 1L) at initialization and at distance Ω(1) after training.

For the sake of simplicity, we will assume that the depth is even, and denote it as 2L. We place
ourselves in a one-dimensional setting (i.e., d = 1). The parameters are (w1, · · · , w2L) ∈ R2L,
and the residual network writes as follows, for an input x ∈ R:

h0(t) = x

hk+1(t) = hk(t) +
1

2L
σ(wk+1(t)hk(t)), k ∈ {0, . . . , 2L− 1}.

We consider a sample consisting of a single point (x,Cx) ∈ R2
+, with C > 1 (independent of

L), and define the empirical risk as ℓ(t) = (h2L(t) − Cx)2. The risk is minimized by gradient
flow.

The weights are initialized to wk(0) = (−1)k

2L . For x ∈ R+ we have that hk(t) ≥ 0 for all
k ∈ {0, . . . , 2L}. Note that the argument of σ on the odd layers is negative. Therefore, by
definition of σ, the gradient of the loss with respect to the odd layers is zero and we have, for
k ∈ {0, . . . , L− 1}, w2k+1(t) = w2k+1(0). On the other hand, the argument of σ is positive on
the even layers, and thus,

h2L(t) =
L∏

j=1

(
1 +

w2j(t)

2L

)
x.

As a consequence, the gradient flow equation for the even layers is, for k ∈ {1, . . . , L},

dw2k

dt
(t) = − ∂ℓ

∂w2k
(t) = 2x

(
C −

L∏

j=1

(
1 +

w2j(t)

2L

)) L∏

j=1,j ̸=k

(
1 +

w2j(t)

2L

)
.

Due to the symmetry of these equations for k ∈ {1, . . . , L} and the fact that all the w2k(0)
are equal, the parameters on each even layer coincide at all times and are equal to w(t) such
that

dw

dt
(t) = 2x

(
C −

(
1 +

w(t)

2L

)L)(
1 +

w(t)

2L

)L−1
.

An analysis of this ODE reveals that w(t) tends as t→∞ to w⋆ > 0 satisfying that
(
1 +

w⋆

2L

)L
= C. (3.56)
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This can be seen by letting y(t) = C − (1 + w(t)
2L )L, and applying Grönwall’s inequality to y.

Therefore, as t → ∞, one has w2k+1(t) → − 1
2L and w2k(t) → w⋆, where (3.56) implies that

w⋆ ≥ 2 log(C). This shows that the final weights are not smooth in the sense that the distance
between two successive weights is Ω(1).

This result contrasts sharply with Proposition 3.8, which shows that successive weights remain at
a distance O( 1L) throughout training, when initialized as a discretization of a Lipschitz continuous
function, and with a smooth activation function. In fact, Proposition 3.8 can be generalized to
any initialization such that successive weights are at distance O( 1L) at initialization, which is the
case in the counter-example. This means that the only broken assumption in our counter-example
is the non-smoothness of the activation function. This non-smoothness causes the gradient flow
dynamics for two successive weights to deviate, even though the weights are initially close to
each other, because they are separated by the kink of ReLU at zero.

3.E Experimental details

We use PyTorch (Paszke et al., 2019).

Large-depth limit. We take n = 100, d = 16, m = 32. We train for 500 iterations, and set
the learning rate to L× 10−2. The scaling of the learning rate with L is the equivalent of the L
factor in the gradient flow (3.4).

Long-time limit. We take n = 50, d = 16, m = 64, L = 64, and train for 80,000 iterations
with a learning rate of 5L× 10−3.

Real-world data. We take L = 256. The first layer is a trainable convolutional layer with
a kernel size of 5 × 5, a stride of 2, a padding of 1, and 16 out channels. We then iterate the
residual layers

hLk+1 = hLk +
1

L
bnL2,k(conv

L
2,k(σ(bn

L
1,k(conv

L
1,k(h

L
k ))))), k ∈ {0, . . . , L− 1},

where convLi,k are convolutions with kernel size 3, stride of 2, and padding of 1, and bnLi,k are
batch normalizations, as is standard in residual networks (He et al., 2016a). The model is trained
using stochastic gradient descent on the cross-entropy loss for 180 epochs. The initial learning
rate is 4× 10−2 and is gradually decreased using a cosine learning rate scheduler.
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4
Momentum Residual Neural Networks

The training of deep residual neural networks (ResNets) with backpropagation has a memory cost
that increases linearly with respect to the depth of the network. A way to circumvent this issue is
to use reversible architectures. In this chapter, we propose to change the forward rule of a ResNet
by adding a momentum term. The resulting networks, momentum residual neural networks
(Momentum ResNets), are invertible. Unlike previous invertible architectures, they can be used
as a drop-in replacement for any existing ResNet block. We show that Momentum ResNets
can be interpreted in the infinitesimal step size regime as second-order ordinary differential
equations (ODEs) and exactly characterize how adding momentum progressively increases the
representation capabilities of Momentum ResNets: they can learn any linear mapping up to a
multiplicative factor, while ResNets cannot. In a learning to optimize setting, where convergence
to a fixed point is required, we show theoretically and empirically that our method succeeds
while existing invertible architectures fail. We show on CIFAR and ImageNet that Momentum
ResNets have the same accuracy as ResNets, while having a much smaller memory footprint,
and show that pre-trained Momentum ResNets are promising for fine-tuning models.
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4.1 Introduction

Problem setup. As a particular instance of deep learning (LeCun et al., 2015; Goodfellow
et al., 2016b), residual neural networks (He et al., 2016a, ResNets) have achieved great empirical
successes due to extremely deep representations and their extensions keep on outperforming state
of the art on real data sets (Kolesnikov et al., 2019; Touvron et al., 2019). Most of deep learning
tasks involve graphics processing units (GPUs), where memory is a practical bottleneck in several
situations (Wang et al., 2018; Peng et al., 2017; Zhu et al., 2017). Indeed, backpropagation, used
for optimizing deep architectures, requires to store values (activations) at each layer during the
evaluation of the network (forward pass). Thus, the depth of deep architectures is constrained
by the amount of available memory. The main goal of this chapter is to explore the properties of
a new model, Momentum ResNets, that circumvent these memory issues by being invertible: the
activations at layer n is recovered exactly from activations at layer n+ 1. This network relies on
a modification of the ResNet’s forward rule which makes it exactly invertible in practice. Instead
of considering the feedforward relation for a ResNet (residual building block)

xn+1 = xn + f(xn, θn), (4.1)

we define its momentum counterpart, which iterates
{
vn+1 = γvn + (1− γ)f(xn, θn)
xn+1 = xn + vn+1,

(4.2)

where f is a parameterized function, v is a velocity term and γ ∈ [0, 1] is a momentum term.
This radically changes the dynamics of the network, as shown in the following figure.
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Figure 4.1: Comparison of the dynamics of a ResNet (left) and a Momentum ResNet with
γ = 0.9 (right) with tied weights between layers, θn = θ for all n. The evolution of the
activations at each layer is shown (depth 15). Models try to learn the mapping x 7→ −x3 in
R. The ResNet fails (the iterations approximate the solution of a first-order ODE, for which
trajectories don’t cross, cf. Picard-Lindelof theorem) while the Momentum ResNet leverages the
changes in velocity to model more complex dynamics.

In contrast with existing reversible models, Momentum ResNets can be integrated seamlessly in
any deep architecture which uses residual blocks as building blocks (cf. in Section 4.3).

Contributions. We introduce momentum residual neural networks (Momentum ResNets),
a new deep model that relies on a simple modification of the ResNet forward rule and which,
without any constraint on its architecture, is perfectly invertible. We show that the memory
requirement of Momentum ResNets is arbitrarily reduced by changing the momentum term
γ (Section 4.3.2), and show that they can be used as a drop-in replacement for traditional
ResNets.

On the theoretical side, we show that Momentum ResNets are easily used in the learning
to optimize setting, where other reversible models fail to converge (Section 4.3.3). We also
investigate the approximation capabilities of Momentum ResNets, seen in the continuous limit as
second-order ODEs (Section 4.4). We first show in Proposition 4.2 that Momentum ResNets
can represent a strictly larger class of functions than first-order neural ODEs. Then, we give
more detailed insights by studying the linear case, where we formally prove in Theorem 4.4 that
Momentum ResNets with linear residual functions have universal approximation capabilities,
and precisely quantify how the set of representable mappings for such models grows as the
momentum term γ increases. This theoretical result is a first step towards a theoretical analysis
of representation capabilities of Momentum ResNets.

Our last contribution is the experimental validation of Momentum ResNets on various learning
tasks. We first show that Momentum ResNets separate point clouds that ResNets fail to separate
(Section 4.5.1). We also show on image datasets (CIFAR-10, CIFAR-100, ImageNet) that
Momentum ResNets have similar accuracy as ResNets, with a smaller memory cost (Section 4.5.2).
We also show that parameters of a pre-trained model are easily transferred to a Momentum
ResNet which achieves comparable accuracy in only few epochs of training. We argue that this
way to obtain pre-trained Momentum ResNets is of major importance for fine-tuning a network
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on new data for which memory storage is a bottleneck. We provide a Pytorch package with a
method transform(model) that takes a torchvision ResNet model and returns its Momentum
counterpart that achieves similar accuracy with very little refit. We also experimentally validate
our theoretical findings in the learning to optimize setting, by confirming that Momentum
ResNets perform better than RevNets (Gomez et al., 2017). Our code is available at https:
//github.com/michaelsdr/momentumnet.

4.2 Background and previous works.

Backpropagation. Backpropagation is the method of choice to compute the gradient of
a scalar-valued function. It operates using the chain rule with a backward traversal of the
computational graph (Bauer, 1974). It is also known as reverse-mode automatic differentiation
(Baydin et al., 2018; Rumelhart et al., 1986; Verma, 2000; Griewank and Walther, 2008a). The
computational cost is similar to the one of evaluating the function itself. The only way to
back-propagate gradients through a neural architecture without further assumptions is to store
all the intermediate activations during the forward pass. This is the method used in common
deep learning libraries such as Pytorch (Paszke et al., 2017), Tensorflow (Abadi et al., 2016)
and JAX (Jacobsen et al., 2018). A common way to reduce this memory storage is to use
checkpointing: activations are only stored at some steps and the others are recomputed between
these check-points as they become needed in the backward pass (e.g., Martens and Sutskever
(2012)).

Reversible architectures. However, models that allow backpropagation without storing any
activations have recently been developed. They are based on two kinds of approaches. The first
is discrete and relies on finding ways to easily invert the rule linking activation n to activation
n + 1 (Gomez et al., 2017; Chang et al., 2018; Haber and Ruthotto, 2017b; Jacobsen et al.,
2018; Behrmann et al., 2019). In this way, it is possible to recompute the activations on the
fly during the backward pass: activations do not have to be stored. However, these methods
either rely on restricted architectures where there is no straightforward way to transfer a well
performing non-reversible model into a reversible one, or do not offer a fast inversion scheme
when recomputing activations backward. In contrast, our proposal can be applied to any existing
ResNet and is easily inverted. The second kind of approach is continuous and relies on ordinary
differential equations (ODEs), where ResNets are interpreted as continuous dynamical systems
(Weinan, 2017b; Chen et al., 2018; Teh et al., 2019; Sun et al., 2018; Weinan et al., 2019; Lu et al.,
2018; Ruthotto and Haber, 2019). This allows one to import theoretical and numerical advances
from ODEs to deep learning. These models are often called neural ODEs (Chen et al., 2018) and
can be trained by using an adjoint sensitivity method (Pontryagin, 1987), solving ODEs backward
in time. This strategy avoids performing reverse-mode automatic differentiation through the
operations of the ODE solver and leads to a O(1) memory footprint. However, defining the
neural ODE counterpart of an existing residual architecture is not straightforward: optimizing
ODE blocks is an infinite dimensional problem requiring a non-trivial time discretization, and
the performances of neural ODEs depend on the numerical integrator for the ODE (Gusak et al.,
2020). In addition, ODEs cannot always be numerically reversed, because of stability issues:
numerical errors can occur and accumulate when a system is run backwards (Gholami et al., 2019;
Teh et al., 2019). Thus, in practice, neural ODEs are seldom used in standard deep learning
settings. Nevertheless, recent works (Zhang et al., 2019b; Queiruga et al., 2020) incorporate ODE
blocks in neural architectures to achieve comparable accuracies to ResNets on CIFAR.
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Representation capabilities. Studying the representation capabilities of such models is also
important, as it gives insights regarding their performance on real world data. It is well-known
that a single residual block has universal approximation capabilities (Cybenko, 1989), meaning
that on a compact set any continuous function can be uniformly approximated with a one-layer
feedforward fully-connected neural network. However, neural ODEs have limited representation
capabilities. Teh et al. (2019) propose to lift points in higher dimensions by concatenating vector
fields of data with zeros in an extra-dimensional space, and show that the resulting augmented
neural ODEs (ANODEs) achieve lower loss and better generalization on image classification and
toy experiments. Li et al. (2019) show that, if the output of the ODE-Net is composed with
elements of a terminal family, then universal approximation capabilities are obtained for the
convergence in Lp norm for p < +∞, which is insufficient (Teshima et al., 2020). In this work,
we consider the representation capabilities in L∞ norm of the ODEs derived from the forward
iterations of a ResNet. Furthermore, Zhang et al. (2020b) proved that doubling the dimension
of the ODE leads to universal approximators, although this result has no application in deep
learning to our knowledge. In this work, we show that in the continuous limit, our architecture
has better representation capabilities than Neural ODEs. We also prove its universality in the
linear case.

Momentum in deep networks. Some recent works (He et al., 2020; Chun et al., 2020;
Nguyen et al., 2020; Li et al., 2018) have explored momentum in deep architectures. However,
these methods differ from ours in their architecture and purpose. Chun et al. (2020) introduce
a momentum to solve an optimization problem for which the iterations do not correspond to
a ResNet. Nguyen et al. (2020) (resp. He et al. (2020)) add momentum in the case of RNNs
(different from ResNets) where the weights are tied to alleviate the vanishing gradient issue (resp.
link the key and query encoder layers). Li et al. (2018) consider a particular case where the
linear layer is tied and is a symmetric definite matrix. In particular, none of the mentioned
architectures are invertible, which is one of the main assets of our method.

Second-order models We show that adding a momentum term corresponds to an Euler
integration scheme for integrating a second-order ODE. Some recently proposed architectures
(Norcliffe et al., 2020; Rusch and Mishra, 2021; Lu et al., 2018; Massaroli et al., 2020) are also
motivated by second-order differential equations. Norcliffe et al. (2020) introduce second-order
dynamics to model second-order dynamical systems, whereas our model corresponds to a discrete
set of equations in the continuous limit. Also, in our method, the neural network only acts on x,
so that although momentum increases the dimension to 2d, the computational burden of a forward
pass is the same as a ResNet of dimension d. Rusch and Mishra (2021) propose second-order
RNNs, whereas our method deals with ResNets. Finally, the formulation of LM-ResNet in Lu
et al. (2018) differs from our forward pass (xn+1 = xn + γvn + (1− γ)f(xn, θn)), even though
they both lead to second-order ODEs. Importantly, none of these second-order formulations are
invertible.

Notations For d ∈ N∗, we denote by Rd×d, GLd(R) and DC
d (R) the set of real matrices, of

invertible matrices, and of real matrices that are diagonalizable in C.

4.3 Momentum Residual Neural Networks

We now introduce Momentum ResNet, a simple transformation of any ResNet into a model with
a small memory requirement, and that can be seen in the continuous limit as a second-order
ODE.
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4.3.1 Momentum ResNets

Adding a momentum term in the ResNet equations. For any ResNet which iterates (4.1),
we define its Momentum counterpart, which iterates (4.2), where (vn)n is the velocity initialized
with some value v0 in Rd, and γ ∈ [0, 1] is the so-called momentum term. This approach
generalizes gradient descent algorithm with momentum (Ruder, 2016), for which f is the gradient
of a function to minimize.

Initial speed and momentum term. In this chapter, we consider initial speeds v0 that
depend on x0 through a simple relation. The simplest options are to set v0 = 0 or v0 = f(x0, θ0).
We prove in Section 4.4 that this dependency between v0 and x0 has an influence on the set
of mappings that Momentum ResNets can represent. The parameter γ controls how much a
Momentum ResNet diverges from a ResNet, and also the amount of memory saving. The closer
γ is to 0, the closer Momentum ResNets are to ResNets, but the less memory is saved. In our
experiments, we use γ = 0.9, which we find to work well in various applications.

Invertibility. Procedure (4.2) is inverted through
{
xn = xn+1 − vn+1,
vn = 1

γ (vn+1 − (1− γ)f(xn, θn)) , (4.3)

so that activations can be reconstructed on the fly during the backward pass in a Momentum
ResNet. In practice, in order to exactly reverse the dynamics, the information lost by the
finite-precision multiplication by γ in (4.2) has to be efficiently stored. We used the algorithm
from Maclaurin et al. (2015) to perform this reversible multiplication. It consists in maintaining
an information buffer, that is, an integer that stores the bits that are lost at each iteration, so
that multiplication becomes reversible. Note that there is always a small loss of floating point
precision due to the addition of the learnable mapping f . In practice, we never found it to be a
problem: this loss in precision can be neglected compared to the one due to the multiplication
by γ.

Table 4.1: Comparison of reversible residual architectures
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Closed-form inversion ✓ ✗ ✓ ✓ ✓

Same parameters ✗ ✓ ✗ ✗ ✓

Unconstrained training ✓ ✗ ✓ ✓ ✓

Drop-in replacement. Our approach makes it possible to turn any existing ResNet into a
reversible one. In other words, a ResNet can be transformed into its Momentum counterpart
without changing the structure of each layer. For instance, consider a ResNet-152 (He et al.,
2016a). It is made of 4 layers (of depth 3, 8, 36 and 3) and can easily be turned into its Momentum
ResNet counterpart by changing the forward equations (4.1) into (4.2) in the 4 layers. No further
change is needed and Momentum ResNets take the exact same parameters as inputs: they are
a drop-in replacement. This is not the case of other reversible models. Neural ODEs (Chen
et al., 2018) take continuous parameters as inputs. i-ResNets (Behrmann et al., 2019) cannot be
trained by plain SGD since the spectral norm of the weights requires constrained optimization.
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i-RevNets (Jacobsen et al., 2018) and RevNets (Gomez et al., 2017) require to train two networks
with their own parameters for each residual block, split the inputs across convolutional channels,
and are half as deep as ResNets: they do not take the same parameters as inputs. Table 4.1
summarizes the properties of reversible residual architectures. We discuss in further details the
differences between RevNets and Momentum ResNets in sections 4.3.3 and 4.5.3.

4.3.2 Memory cost

Instead of storing the full data at each layer, we only need to store the bits lost at each
multiplication by γ (cf. “intertibility”). For an architecture of depth k, this corresponds to storing
log2((

1
γ )

k) values for each sample (k(1−γ)
ln(2) if γ is close to 1). To illustrate, we consider two

situations where storing the activations is by far the main memory bottleneck. First, consider a
toy feedforward architecture where f(x, θ) =W T

2 σ(W1x+ b), with x ∈ Rd and θ = (W1,W2, b),
where W1,W2 ∈ Rp×d and b ∈ Rp, with a depth k ∈ N. We suppose that the weights are the
same at each layer. The training set is composed of n vectors x1, ..., xn ∈ Rd. For ResNets, we
need to store the weights of the network and the values of all activations for the training set
at each layer of the network. In total, the memory needed is O(k × d × nbatch) per iteration.
In the case of Momentum ResNets, if γ is close to 1 we get a memory requirement of
O((1−γ)×k×d×nbatch). This proves that the memory dependency in the depth k is arbitrarily
reduced by changing the momentum γ. The memory savings are confirmed in practice, as shown
in Figure 4.2.
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Figure 4.2: Comparison of memory needed (calculated using a profiler) for computing
gradients of the loss, with ResNets (activations are stored) and Momentum ResNets (activations
are not stored). We set nbatch = 500, d = 500 and γ = 1 − 1

50k at each depth. Momentum
ResNets give a nearly constant memory footprint.

As another example, consider a ResNet-152 (He et al., 2016a) which can be used for ImageNet
classification (Deng et al., 2009b). Its layer named “conv4_x” has a depth of 36: it has 40 M
parameters, whereas storing the activations would require storing 50 times more parameters.
Since storing the activations is here the main obstruction, the memory requirement for this layer
can be arbitrarily reduced by taking γ close to 1.

4.3.3 The role of momentum

When γ is set to 0 in (4.2), we recover a ResNet. Therefore, Momentum ResNets are a
generalization of ResNets. When γ −→ 1, one can scale f → 1

1−γ f to get in (4.2) a symplectic
scheme (Hairer et al., 2006) that recovers a special case of other popular invertible neural network:
RevNets (Gomez et al., 2017) and Hamiltonian Networks (Chang et al., 2018). A RevNet
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iterates
vn+1 = vn + φ(xn, θn), xn+1 = xn + ψ(vn+1, θ

′
n), (4.4)

where φ and ψ are two learnable functions.

The usefulness of such architecture depends on the task. RevNets have encountered success for
classification and regression. However, we argue that RevNets cannot work in some settings.
For instance, under mild assumptions, the RevNet iterations do not have attractive fixed
points when the parameters are the same at each layer: θn = θ, θ′n = θ′. We rewrite (4.4) as
(vn+1, xn+1) = Ψ(vn, xn) with Ψ(v, x) = (v + φ(x, θ), x+ ψ(v + φ(x, θ), θ′)).

Proposition 4.1 (Instability of fixed points). Let (v∗, x∗) a fixed point of the RevNet itera-
tion (4.4). Assume that φ (resp. ψ) is differentiable at x∗ (resp. v∗), with Jacobian matrix A
(resp. B) ∈ Rd×d. The Jacobian of Ψ at (v∗, x∗) is J(A,B) =

( Idd A
B Idd+BA

)
. If A and B are

invertible, then there exists λ ∈ Sp (J(A,B)) such that |λ| ≥ 1 and λ ̸= 1.

This shows that (v∗, x∗) cannot be a stable fixed point. As a consequence, in practice, a RevNet
cannot have converging iterations: according to (4.4), if xn converges then vn must also converge,
and their limit must be a fixed point. The previous proposition shows that it is impossible.

This result suggests that RevNets should perform poorly in problems where one expects the
iterations of the network to converge. For instance, as shown in the experiments in Section 4.5.3,
this happens when we use reverible dynamics in order to learn to optimize (Maclaurin et al.,
2015). In contrast, the proposed method can converge to a fixed point as long as the momentum
term γ is strictly less than 1.

Remark. Proposition 4.1 has a continuous counterpart. Indeed, in the continuous limit,
(4.4) writes v̇ = φ(x, θ), ẋ = ψ(v, θ′). The corresponding Jacobian in (v∗, x∗) is

(
0 A
B 0

)
. The

eigenvalues of this matrix are the square roots of those of AB: they cannot all have a real part
< 0 (same stability issue in the continuous case).

4.3.4 Momentum ResNets as continuous models

ResNet:

xn+1 = xn + f(xn, ✓n)

First order ODE:

ẋ = f(x, ✓)

Momentum ResNet:

vn+1 = �vn+(1��)f(xn, ✓n)

xn+1 = xn + vn+1

Second order ODE:

"ẍ+ ẋ = f(x, ✓)

� = 0

" = 0

Continuous frameworkframeworkContinuous

Figure 4: Overview of the four di↵erent paradigms

Invertibility This procedure can be inverted exactly through:

xn = xn+1 � ⌧vn+1

vn =
vn+1 � �f(xn)

1� �
.

(25)

Of course, the di�cult point is the numerical errors that can be accumulated
through the division by (1� �). This problem is dealt in Section 3.4.

Symplectic property One can easily check that � = 0 in (24) is a su�cient
and necessary condition to get a symplectic discrete integration scheme (see
Section 2.5). Indeed, we can rewrite (24) in one line:

zn+1 = g(zn), (26)

where g is defined through

g(z) = (x+ ⌧(1� �)v + ⌧�f(x), (1� �)v + �f(x)).

Since

Jac(g) =


I + ⌧�@xf ⌧(1� �)I

�@xf (1� �)I

�
,

we have

Jac(g)TJJac(g) =


�(@xf � @xfT ) (1� �)I

�(1� �)I 0

�
.

3.3 Backpropagation for MomentumNets

We now adapt the results on backpropagation from Section 2.4 for Momentum-
Nets .

20

Figure 4.3: Overview of the four different paradigms.

Neural ODEs: ResNets as first-order ODEs. The ResNets equation (4.1) with initial
condition x0 (the input of the ResNet) can be seen as a discretized Euler scheme of the ODE
ẋ = f(x, θ) with x(0) = x0. Denoting T a time horizon, the neural ODE maps the input x(0) to
the output x(T ), and, as in Chen et al. (2018), is trained by minimizing a loss L(x(T ), θ).
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Momentum ResNets as second-order ODEs. Let ε = 1
1−γ . We can then rewrite (4.2)

as
vn+1 = vn +

f(xn, θn)− vn
ε

, xn+1 = xn + vn+1,

which corresponds to a Verlet integration scheme (Hairer et al., 2006) with step size 1 of the
differential equation εẍ + ẋ = f(x, θ). Thus, in the same way that ResNets can be seen as
discretization of first-order ODEs, Momentum ResNets can be seen as discretization of second-
order ones. Figure 4.3 sums up these ideas.

4.4 Representation capabilities

We now turn to the analysis of the representation capabilities of Momentum ResNets in the
continuous setting. In particular, we precisely characterize the set of mappings representable by
Momentum ResNets with linear residual functions.

4.4.1 Representation capabilities of first-order ODEs

We consider the first-order model

ẋ = f(x, θ) with x(0) = x0. (4.5)

We denote by φt(x0) the solution at time t starting at initial condition x(0) = x0. It is called
the flow of the ODE. For all t ∈ [0, T ], where T is a time horizon, φt is a homeomorphism: it is
continuous, bijective with continuous inverse.

First-order ODEs are not universal approximators. ODEs such as (4.5) are not universal
approximators. Indeed, the function mapping an initial condition to the flow at a certain
time horizon T cannot represent every mapping x0 7→ h(x0). For instance when d = 1, the
mapping x→ −x cannot be approximated by a first-order ODE, since 1 should be mapped to
−1 and 0 to 0, which is impossible without intersecting trajectories (Teh et al., 2019). In fact,
the homeomorphisms represented by (4.5) are orientation-preserving: if K ⊂ Rd is a compact
set and h : K −→ Rd is a homeomorphism represented by (4.5), then h is in the connected
component of the identity function on K for the topology of the uniform convergence (see details
in Appendix 4.B.5).

4.4.2 Representation capabilities of second-order ODEs

We consider the second-order model for which we recall that Momentum ResNets are a discretiza-
tion:

εẍ+ ẋ = f(x, θ) with (x(0), ẋ(0)) = (x0, v0). (4.6)

Representation capabilities of a model (4.6) on the x space. We recall that we consider
initial speeds v0 that can depend on the input x0 ∈ Rd (for instance v0 = 0 or v0 = f(x0, θ0)). We
therefore assume φt : Rd 7→ Rd such that φt(x0) is solution of (4.6). We emphasize that φt is not
always a homeomorphism. For instance, φt(x0) = x0 exp (−t/2) cos (t/2) solves ẍ+ ẋ = −1

2x(t)
with (x(0), ẋ(0)) = (x0,−x0

2 ). All the trajectories intersect at time π. It means that Momentum
ResNets can learn mappings that are not homeomorphisms, which suggests that increasing ε
should lead to better representation capabilities. The first natural question is thus whether, given
h : Rd −→ Rd, there exists some f such that φt associated to (4.6) satisfies ∀x ∈ Rd, φ1(x) = h(x).
In the case where v0 is an arbitrary function of x0, the answer is trivial since (4.6) can represent
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any mapping, as proved in Appendix 4.B.2. This setting does not correspond to the common
use case of ResNets, which take advantage of their depth, so it is important to impose stronger
constraints on the dependency between v0 and x0. For instance, the next proposition shows that
even if one imposes v0 = f(x0, θ0), a second-order model is at least as general as a first-order
one.

Proposition 4.2 (Momentum ResNets are at least as general). There exists a function f̂ such
that for all x solution of (4.5), x is also solution of the second-order model εẍ+ ẋ = f̂(x, θ) with
(x(0), ẋ(0)) = (x0, f(x0, θ0)).

Furthermore, even with the restrictive initial condition v0 = 0, x 7→ λx for λ > −1 can always be
represented by a second-order model (4.6) (see details in Appendix 4.B.4). This supports the
claim that the set of representable mappings increases with ε.

4.4.3 Universality of Momentum ResNets with linear residual functions

As a first step towards a theoretical analysis of the universal representation capabilities of
Momentum ResNets, we now investigate the linear residual function case. Consider the second-
order linear ODE

εẍ+ ẋ = θx with (x(0), ẋ(0)) = (x0, 0), (4.7)

with θ ∈ Rd×d. We assume without loss of generality that the time horizon is T = 1. We have
the following result.

Proposition 4.3 (Solution of (4.7)). At time 1, (4.7) defines the linear mapping x0 7→ φ1(x0) =
Ψε(θ)x0 where

Ψε(θ) = e−
1
2ε

+∞∑

n=0

(
1

(2n)!
+

1

2ε(2n+ 1)!

)(
θ

ε
+

Idd
4ε2

)n

.

Characterizing the set of mappings representable by (4.7) is thus equivalent to precisely analyzing
the range Ψε(Rd×d).

Representable mappings of a first-order linear model. When ε −→ 0, Ψε(θ) −→ Ψ0(θ) =
exp θ. The range of the matrix exponential is indeed the set of representable mappings of a first
order linear model

ẋ = θx with x(0) = x0 (4.8)

and this range is known (Andrica and Rohan, 2010) to be Ψ0(Rd×d) = exp (Rd×d) = {M2 |
M ∈ GLd(R)}. This means that one can only learn mappings that are the square of invertible
mappings with a first-order linear model (4.8). To ease the exposition and exemplify the impact of
increasing ε > 0, we now consider the case of matrices with real coefficients that are diagonalizable
in C, DC

d (R). Note that the general setting of arbitrary matrices is exposed in Appendix 4.A.3
using Jordan decomposition. Note also that DC

d (R) is dense in Rd×d (Hartfiel, 1995). Using
Theorem 1 from Culver (1966), we have that if D ∈ DC

d (R), then D is represented by a first-order
model (4.8) if and only if D is non-singular and for all eigenvalues λ ∈ Sp(D) with λ < 0,
λ is of even multiplicity order. This is restrictive because it forces negative eigenvalues to be
in pairs. We now generalize this result and show that increasing ε > 0 leads to less restrictive
conditions.
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Figure 4.4: Left: Evolution of λε defined in Theorem 4.4. λε is non increasing, stays close
to 0 when ε≪ 1 and close to −1 when ε ≥ 2. Right: Evolution of the real eigenvalues λ1
and λ2 of representable matrices in DC

d (R) by (4.7) when d = 2 for different values of ε. The
grey colored areas correspond to the different representable eigenvalues. When ε = 0, λ1 = λ2 or
λ1 > 0 and λ2 > 0. When ε > 0, single negative eigenvalues are acceptable.

Representable mappings by a second-order linear model. Again, by density and for
simplicity, we focus on matrices in DC

d (R), and we state and prove the general case in Ap-
pendix 4.A.3, making use of Jordan blocks decomposition of matrix functions (Gantmacher,
1959) and localization of zeros of entire functions (Runckel, 1969). The range of Ψε over the
reals has for form Ψε(R) = [λε,+∞[. It plays a pivotal role to control the set of representable
mappings, as stated in the theorem bellow. Its minimum value can be computed conveniently
since it satisfies λε = minα∈RGε(α) where Gε(α) ≜ exp (− 1

2ε)(cos(α) +
1

2εα sin(α)).

Theorem 4.4 (Representable mappings with linear residual functions). Let D ∈ DC
d (R). Then

D is represented by a second-order model (4.7) if and only if ∀λ ∈ Sp(D) such that λ < λε, λ
is of even multiplicity order.

Theorem 4.4 is illustrated Figure 4.4. A consequence of this result is that the set of representable
linear mappings is strictly increasing with ε. Another consequence is that one can learn any
mapping up to scale using the ODE (4.7): if D ∈ DC

d (R), there exists αε > 0 such that for all
λ ∈ Sp(αεD), one has λ > λε. Theorem 4.4 shows that αεD is represented by a second-order
model (4.7).

4.5 Experiments

We now demonstrate the applicability of Momentum ResNets through experiments. We used
Pytorch and Nvidia Tesla V100 GPUs.
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4.5.1 Point clouds separation
M

om
en

tu
m

 R
es

N
et

Re
sN

et

Figure 4.5: Separation of four nested rings using a ResNet (upper row) and a Momentum
ResNet (lower row). From left to right, each figure represents the point clouds transformed at
layer 3k. The ResNet fails whereas the Momentum ResNet succeeds.

We experimentally validate the representation capabilities of Momentum ResNets on a challenging
synthetic classification task. As already noted (Teh et al., 2019), neural ODEs ultimately fail
to break apart nested rings. We experimentally demonstrate the advantage of Momentum
ResNets by separating 4 nested rings (2 classes). We used the same structure for both models:
f(x, θ) =W T

2 tanh(W1x+ b) with W1, W2 ∈ R16×2, b ∈ R16, and a depth 15. Evolution of the
points as depth increases is shown in Figure 4.5. The fact that the trajectories corresponding
to the ResNet panel don’t cross is because, with this depth, the iterations approximate the
solution of a first order ODE, for which trajectories cannot cross, due to the Picard-Lindelof
theorem.

4.5.2 Image experiments

We also compare the accuracy of ResNets and Momentum ResNets on real data sets: CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2010) and ImageNet (Deng et al., 2009b). We used existing
ResNets architectures. We recall that Momentum ResNets can be used as a drop-in replacement
and that it is sufficient to replace every residual building block with a momentum residual forward
iteration. We set γ = 0.9 in the experiments. More details about the experimental setup are
given in Appendix 4.D.

Table 4.2: Test accuracy for CIFAR over 10 runs for each model

Model CIFAR-10 CIFAR-100
Momentum ResNet, v0 = 0 95.1± 0.13 76.39± 0.18

Momentum ResNet, v0 = f(x0) 95.18± 0.06 76.38± 0.42

ResNet 95.15± 0.12 76.86± 0.25

Results on CIFAR-10 and CIFAR-100. For these data sets, we used a ResNet-101 (He
et al., 2016a) and a Momentum ResNet-101 and compared the evolution of the test error and
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test loss. Two kinds of Momentum ResNets were used: one with an initial speed v0 = 0 and
the other one where the initial speed v0 was learned: v0 = f(x0). These experiments show that
Momentum ResNets perform similarly to ResNets. Results are summarized in Table 4.2.
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Figure 4.6: Upper row: Robustness of final accuracy w.r.t γ when training Momentum
ResNets 101 on CIFAR-10. We train the networks with a momentum γtrain and evaluate their
accuracy with a different momentum γtest at test time. We optionally refit the networks for 20
epochs. We recall that γtrain = 0 corresponds to a classical ResNet and γtrain = 1 corresponds to
a Momentum ResNet with optimal memory savings. Lower row: Top-1 classification error
on ImageNet (single crop) for 4 different residual architectures of depth 101 with the same
number of parameters. Final test accuracy is 22% for the ResNet-101 and 23% for the 3 other
invertible models. In particular, our model achieve the same performance as a RevNet with the
same number of parameters.

Effect of the momentum term γ. Theorem 4.4 shows the effect of ε on the representable
mappings for linear ODEs. To experimentally validate the impact of γ, we train a Momentum
ResNet-101 on CIFAR-10 for different values of the momentum at train time, γtrain. We also
evaluate Momentum ResNets trained with γtrain = 0 and γtrain = 1 with no further training for
several values of the momentum at test time, γtest. In this case, the test accuracy never decreases
by more than 3%. We also refit for 20 epochs Momentum ResNets trained with γtrain = 0 and
γtrain = 1. This is sufficient to obtain similar accuracy as models trained from scratch. Results
are shown in Figure 4.6 (upper row). This indicates that the choice of γ has a limited impact on
accuracy. In addition, learning the parameter γ does not affect the accuracy of the model. Since
it also breaks the method described in 4.3.2, we fix γ in all the experiments.

Results on ImageNet. For this data set, we used a ResNet-101, a Momentum ResNet-101,
and a RevNet-101. For the latter, we used the procedure from Gomez et al. (2017) and adjusted
the depth of each layer for the model to have approximately the same number of parameters
as the original ResNet-101. Evolution of test errors are shown in Figure 4.6 (lower row), where
comparable performances are achieved.

Memory costs. We compare the memory (using a memory profiler) for performing one epoch
as a function of the batch size for two datasets: ImageNet (depth of 152) and CIFAR-10 (depth
of 1201). Results are shown in Figure 4.7 and illustrate how Momentum ResNets can benefit
from increased batch size, especially for very deep models. We also show in Figure 4.7 the final
test accuracy for a full training of Momentum ResNets on CIFAR-10 as a function of the memory
used (directly linked to γ (section 4.3.2)).

Ability to perform pre-training and fine-tuning. It has been shown (Tajbakhsh et al.,
2016) that in various medical imaging applications the use of a pre-trained model on ImageNet
with adapted fine-tuning outperformed a model trained from scratch. In order to easily obtain pre-
trained Momentum ResNets for applications where memory could be a bottleneck, we transferred
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Figure 4.7: Upper row: Memory used (using a profiler) for a ResNet and a Momentum ResNet
on one training epoch, as a function of the batch size. Lower row: Final test accuracy as a
function of the memory used (per epoch) for training Momentum ResNets-101 on CIFAR-10.

the learned parameters of a ResNet-152 pre-trained on ImageNet to a Momentum ResNet-152
with γ = 0.9. In only 1 epoch of additional training we reached a top-1 error of 26.5% and in 5
additional epochs a top-1 error of 23.5%. We then empirically compared the accuracy of these
pre-trained models by fine-tuning them on new images: the hymenoptera1 data set.
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Figure 4.8: Accuracy as a function of
time on hymenoptera when fine-tuning
a ResNet-152 and a Momentum ResNet-
152 with batch sizes of 2 and 4, respec-
tively, as permitted by memory.

As a proof of concept, suppose we have a GPU with 3 Go of RAM. The images have a resolution of
500×500 pixels so that the maximum batch size that can be taken for fine-tuning the ResNet-152

1https://www.kaggle.com/ajayrana/hymenoptera-data
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is 2, against 4 for the Momentum ResNet-152. As suggested in Tajbakhsh et al. (2016) (“if the
distance between the source and target applications is significant, one may need to fine-tune the
early layers as well”), we fine-tune the whole network in this proof of concept experiment. In
this setting the Momentum ResNet leads to faster convergence when fine-tuning, as shown in
Figure 4.8: Momentum ResNets can be twice as fast as ResNets to train when samples are so big
that only few of them can be processed at a time. In contrast, RevNets (Gomez et al., 2017)
cannot as easily be used for fine-tuning since, as shown in (4.4), they require to train two distinct
networks.

Continuous training. We also compare accuracy when using first-order ODE blocks (Chen
et al., 2018) and second-order ones on CIFAR-10. In order to emphasize the influence of the ODE,
we considered a neural architecture which down-sampled the input to have a certain number
of channels, and then applied 10 successive ODE blocks. Two types of blocks were considered:
one corresponded to the first-order ODE (4.5) and the other one to the second-order ODE (4.6).
Training was based on the odeint function implemented by Chen et al. (2018). Figure 4.9 shows
the final test accuracy for both models as a function of the number of channels used. As a
baseline, we also include the final accuracy when there are no ODE blocks. We see that an ODE
Net with momentum significantly outperforms an original ODE Net when the number of channels
is small. Training took the same time for both models.
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Figure 4.9: Accuracy after 120 iter-
ations on CIFAR-10 with or without
momentum, when varying the number
of channels.

4.5.3 Learning to optimize

We conclude by illustrating the usefulness of our Momentum ResNets in the learning to optimize
setting, where one tries to learn to minimize a function. We consider the Learned-ISTA (LISTA)
framework (Gregor and LeCun, 2010). Given a matrix D ∈ Rd×p, and a hyper-parameter λ > 0,
the goal is to perform the sparse coding of a vector y ∈ Rd, by finding x ∈ Rp that minimizes the
Lasso cost function Ly(x) ≜ 1

2∥y−Dx∥2 + λ∥x∥1 (Tibshirani, 1996). In other words, we want to
compute a mapping y 7→ argminx Ly(x). The ISTA algorithm (Daubechies et al., 2004) solves
the problem, starting from x0 = 0, by iterating xn+1 = ST(xn − ηD⊤(Dxn − y), ηλ), with η > 0
a step-size. Here, ST is the soft-thresholding operator. The idea of Gregor and LeCun (2010) is
to view L iterations of ISTA as the output of a neural network with L layers that iterates xn+1 =
g(xn, y, θn) ≜ ST(W 1

nxn +W 2
ny, ηλ), with parameters θ ≜ (θ1, . . . , θL) and θn ≜ (W 1

n ,W
2
n). We

call Φ(y, θ) the network function, which maps y to the output xL. Importantly, this network can
be seen as a residual network, with residual function f(x, y, θ) = g(x, y, θ)−x. ISTA corresponds
to fixed parameters between layers: W 1

n = Idp − ηD⊤D and W 2
n = ηD⊤, but these parameters

can be learned to yield better performance. We focus on an “unsupervised” learning setting, where
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we have some training examples y1, . . . , yQ, and use them to learn parameters θ that quickly
minimize the Lasso function L. In other words, the parameters θ are estimated by minimizing
the cost function θ 7→∑Q

q=1 Lyq(Φ(yq, θ)). The performance of the network is then measured by
computing the testing loss, that is the Lasso loss on some unseen testing examples.

We consider a Momentum ResNet and a RevNet variant of LISTA which use the residual function
f . For the RevNet, the activations xn are first duplicated: the network has twice as many
parameters at each layer. The matrix D is generated with i.i.d. Gaussian entries with p = 32,
d = 16, and its columns are then normalized to unit variance. Training and testing samples y
are generated as normalized Gaussian i.i.d. entries. More details on the experimental setup are
added in Appendix 4.D. The next Figure 4.10 shows the test loss of the different methods, when
the depth of the networks varies.

2 4 6 8
Layers

10−1

L
−
L∗

LISTA Momentum ResNet RevNet ISTA

Figure 4.10: Evolution of the test loss for different models as a function of depth in the
Learned-ISTA (LISTA) framework.

As predicted by Proposition 4.1, the RevNet architecture fails on this task: it cannot have
converging iterations, which is exactly what is expected here. In contrast, the Momentum ResNet
works well, and even outperforms the LISTA baseline. This is not surprising: it is known that
momentum can accelerate convergence of first order optimization methods.

Conclusion

This chapter introduces Momentum ResNets, new invertible residual neural networks operating
with a significantly reduced memory footprint compared to ResNets. In sharp contrast with
existing invertible architectures, they are made possible by a simple modification of the ResNet
forward rule. This simplicity offers both theoretical advantages (better representation capabilities,
tractable analysis of linear dynamics) and practical ones (drop-in replacement, speed and memory
improvements for model fine-tuning). Momentum ResNets interpolate between ResNets (γ = 0)
and RevNets (γ = 1), and are a natural second-order extension of neural ODEs. As such, they can
capture non-homeomorphic dynamics and converging iterations. As shown in this chapter, the
latter is not possible with existing invertible residual networks, although crucial in the learning
to optimize setting.

In Section 4.A we give the proofs of all the Propositions and the Theorem. In Section 4.B we
give other theoretical results to validate statements made in the chapter. Section 4.C presents
the algorithm from Maclaurin et al. (2015). Section 4.D gives details for the experiments in
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the chapter. We derive the formula for backpropagation in Momentum ResNets in Section 4.E.
Finally, we present additional figures in Section 4.F.

4.A Proofs

Notations

• C∞
0 ([0, 1],Rd) is the set of infinitely differentiable functions from [0, 1] to Rd with value 0

in 0.

• If f : U × V →W is a function, we denote by ∂uf , when it exists, the partial derivative of
f with respect to u ∈ U .

• For a matrix A ∈ Rd×d, we denote by (λ− z)a the Jordan block of size a ∈ N associated to
the eigenvalue z ∈ C .

4.A.0 Instability of fixed points – Proof of Proposition 4.1

Proof. Since (x∗, v∗) is a fixed point of the RevNet iteration, we have

φ(x∗) = 0

ψ(v∗) = 0

Then, a first order expansion, writing x = x∗ + ε and v = v∗ + δ gives at order one

Ψ(v, x) = (v∗ + δ +Aε, x∗ + ε+B(δ +Aε)) (4.9)

We therefore obtain at order one

Ψ(v, x) = Ψ(v∗, x∗) + J(A,B)

(
δ
ε

)

which shows that J(A,B) is indeed the Jacobian of Ψ at (v∗, x∗). We now turn to a study of the
spectrum of J(A,B). We let λ ∈ C an eigenvalue of J(A,B), and vectors u ∈ Cd, w ∈ Cd such
that (u,w) is the corresponding eigenvector, and study the eigenvalue equation

J(A,B)

(
u
w

)
= λ

(
u
w

)

which gives the two equations
u+Aw = λu (4.10)

w +Bu+BAw = λw (4.11)

We start by showing that λ ̸= 1 by contradiction. Indeed, if λ = 1, then (4.10) gives Aw = 0,
which implies w = 0 since A is invertible. Then, (4.11) gives Bu = 0, which also implies u = 0.
This contradicts the fact that (u, v) is an eigenvector (which is non-zero by definition).

Then, the first equation (4.10) gives Aw = (λ− 1)u, and multiplying (4.11) by A on the left gives

λABu = (λ− 1)2u (4.12)

We also cannot have λ = 0, since it would imply u = 0. Then, dividing (4.12) by λ shows that
(λ−1)2

λ is an eigenvalue of AB.
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Next, we let µ ̸= 0 the eigenvalue of AB such that µ = (λ−1)2

λ . The equation can be rewritten as
the second order equation

λ2 − (2 + µ)λ+ 1 = 0

This equation has two solutions λ1(µ), λ2(µ), and since the constant term is 1, we have
λ1(µ)λ2(µ) = 1. Taking modulus, we get |λ1(µ)||λ2(µ)| = 1, which shows that necessarily,
either |λ1(µ)| ≥ 1 or |λ1(µ)| ≥ 1.

Now, the previous reasoning is only a necessary condition on the eigenvalues, but we can now
prove the advertised result by going backwards: we let µ ≠ 0 an eigenvalue of AB, and u ∈ Cd

the associated eigenvector. We consider λ a solution of λ2−(2+µ)λ+1 = 0 such that |λ| ≥ 1 and
λ ̸= 1. Then, we consider w = (λ− 1)A−1u. We just have to verify that (u, v) is an eigenvector
of J(A,B). By construction, (4.10) holds. Next, we have

A(w +Bu+BAw) = (λ− 1)u+ABu+ (λ− 1)ABu = (λ− 1)u+ λABu

Leveraging the fact that u is an eigenvector of AB, we have λABu = λµu, and finally:

A(w +Bu+BAw) = (λ− 1 + λµ)u = λ(λ− 1)u = λAw

Which recovers exactly (4.11): λ is indeed an eigenvalue of J(A,B).

4.A.1 Momentum ResNets are more general than neural ODEs – Proof of
Proposition 4.2

Proof. If x satisfies (4.5) we get by derivation that

ẍ = ∂xf(x, θ)f(x, θ) + ∂θf(x, θ)θ̇

Then, if we define f̂(x, θ) = ε[∂xf(x, θ)f(x, θ)+∂θf(x, θ)θ̇]+f(x, θ), we get that x is also solution
of the second-order model εẍ+ ẋ = f̂(x, θ) with (x(0), ẋ(0)) = (x0, f(x0, θ0)).

4.A.2 Solution of (4.7) – Proof of Proposition 4.3

(4.7) writes

{
ẋ = v, x(0) = x0

v̇ = θx−v
ε , v(0) = 0.

For which the solution at time t writes

(
x(t)
v(t)

)
= exp

(
0 Iddt
θt
ε − Iddt

ε

)
.

(
x0
0

)
.

The calculation of this exponential gives

x(t) = e−
t
2ε

(
+∞∑

n=0

1

(2n)!
(
θ

ε
+

Idd
4ε2

)nt2n +
+∞∑

n=0

1

2ε(2n+ 1)!
(
θ

ε
+

Idd
4ε2

)nt2n+1

)
x0.

Note that it can be checked directly that this expression satisfies (4.7) by derivations. At time 1
this effectively gives x(1) = Ψε(θ)x0.
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4.A.3 Representable mappings for a Momentum ResNet with linear residual
functions – Proof of Theorem 4.4

In what follows, we denote by fε the function of matrices defined by

fε(θ) = Ψε(εθ −
I

4ε
) = e−

1
2ε

+∞∑

n=0

(
1

(2n)!
+

1

2ε(2n+ 1)!

)
θn.

Because Ψε(Rd×d) = fε(Rd×d), we choose to work on fε.

We first need to prove that fε is surjective on C.

4.A.3.1 Surjectivity on C of fε

Lemma 4.5 (Surjectivity of fε). For ε > 0, fε is surjective on C.

Proof. Consider

Fε : C −→ C

z 7−→ e−
1
2ε (cosh(z) +

1

2εz
sinh(z)).

For z ∈ C, we have fε(z2) = Fε(z), and because z 7→ z2 is surjective on C, it is sufficient to prove
that Fε is surjective on C. Suppose by contradiction that there exists w ∈ C such that ∀z ∈ C,
exp ( 1

2ε)Fε(z) ̸= w. Then exp ( 1
2ε)Fε − w is an entire function (Levin, 1996) of order 1 with no

zeros. Using Hadamard’s factorization theorem (Conway, 2012), this implies that there exists
a, b ∈ C such that ∀z ∈ C,

cosh(z) +
sinh(z)

2εz
− w = exp (az + b).

However, since Fε is an even function one has that ∀z ∈ C

exp (az + b) = exp (−az + b)

so that ∀z ∈ C, 2az ∈ 2iπZ. Necessarily, a = 0, which is absurd because Fε is not constant.

We first prove Theorem 4.4 in the diagonalizable case.

4.A.3.2 Theorem 4.4 in the diagonalizable case

Proof. Necessity Suppose that D can be represented by a second-order model (4.7). This means
that there exists a real matrix X such that D = fε(X) with X real and

fε(X) = e−
1
2ε (

+∞∑

n=0

aεnX
n)

with
aεn =

1

(2n)!
+

1

2ε(2n+ 1)!
.

X commutes with D so that there exists P ∈ GLd(C) such that P−1DP is diagonal and P−1XP
is triangular. Because fε(P−1XP ) = P−1DP , we have that ∀λ ∈ Sp(D), there exists z ∈ Sp(X)
such that λ = fε(z). Because λ < λε, necessarily, z ∈ C− R. In addition, λ = fε(z) = λ̄ = fε(z̄).
Because X is real, each z ∈ Sp(X) must be associated with z̄ in P−1XP . Thus, λ appears in
pairs in P−1DP .
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Sufficiency Now, suppose that ∀λ ∈ Sp(D) with λ < λε, λ is of even multiplicity order. We
are going to exhibit a X real such that D = fε(X). Thanks to Lemma 4.5, we have that fε is
surjective. Let λ ∈ Sp(D).

• If λ ∈ R and λ < λε or λ ∈ C − R then there exists z ∈ C − R by Lemma 4.5 such that
λ = fε(z).

• If λ ∈ R and λ ≥ λε, then because fε is continuous and goes to infinity when x ∈ R goes
to infinity, there exists x ∈ R such that λ = fε(x).

In addition, there exist (α1, ..., αk) ∈ (C− R)k ∪ [−∞, λε[k, (β1, ..., βp) ∈ [λε,+∞]p such that

D = Q−1∆Q,

with Q ∈ GLd(R), and

∆ =




P−1
1 Dα1P1 02 · · · · · · · · · 02

02
. . . · · · · · · · · · 02

...
... P−1

k Dαk
Pk 02 · · · 02

0 · · · · · · β1 · · · 0

0 · · · · · · 0
. . . 0

0 · · · · · · · · · · · · βp




∈ Rd×d

with Pj ∈ GL2(C) and Dαj =

(
αj 0
0 ᾱj

)
.

Let (z1, ..., zk) ∈ (C− R)k and (x1, ..., xp) ∈ Rp be such that fε(zj) = αj and fε(xj) = βj . For
1 ≤ j ≤ k, one has P−1

j DzjPj ∈ R2×2. Indeed, writing αj = aj + ibj with aj , bj ∈ R, the fact

that P−1
j DαjPj ∈ R2×2 implies that i

(
1 0
0 −1

)
∈ iR2×2. Writing zj = uj + ivj with uj , vj ∈ R,

we get that P−1
j DzjPj ∈ R2×2. Then

X = Q




P−1
1 Dz1P1 02 · · · · · · · · · 02

02
. . . · · · · · · · · · 02

...
... P−1

k DzkPk 02 · · · 02
0 · · · · · · x1 · · · 0

0 · · · · · · 0
. . . 0

0 · · · · · · · · · · · · xp




Q−1 ∈ Rd×d

is such that fε(X) = D, and D is represented by a second-order model (4.7).

We now state and demonstrate the general version of Theorem 4.4.

First, we need to demonstrate properties of the complex derivatives of the entire function fε.

4.A.3.3 The entire function fε has a derivative with no-zeros on C− R.

Lemma 4.6 (On the zeros of f ′ε). ∀z ∈ C− R we have f ′ε(z) ̸= 0.
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Proof. One has

Gε(z) = e−
1
2ε (cos(z) +

1

2εz
sin(z)) = fε(−z2)

so that G′
ε(z) = −2zf ′ε(−z2) and it is sufficient to prove that the zeros of G′

ε are all real.

We first show that Gε belongs to the Laguerre-Pólya class (Craven and Csordas, 2002). The
Laguerre-Pólya class is the set of entire functions that are the uniform limits on compact sets of
C of polynomials with only real zeros. To show that Gε belongs to the Laguerre-Pólya class, it is
sufficient to show (Dryanov and Rahman, 1999, p. 22) that:

• The zeros of Gε are all real.

• If (zn)n∈N denotes the sequence of real zeros of Gε, one has
∑ 1

|zn|2 <∞.

• Gε is of order 1.

First, the zeros of Gε are all real, as demonstrated in Runckel (1969). Second, if (zn)n∈N denotes
the sequence of real zeros of Gε, one has zn ∼ nπ + π

2 as n −→ ∞, so that
∑ 1

|zn|2 <∞. Third,
Gε is of order 1. Thus, we have that Gε is indeed in the Laguerre-Pólya class.

This class being stable under differentiation, we get that G′
ε also belongs to the Laguerre-Pólya

class. So that the roots of G′
ε are all real, and hence those of fε as well.

4.A.3.4 Theorem 4.4 in the general case

When ε = 0, we have in the general case the following from Culver (1966):

Let A ∈ Rd×d. Then A can be represented by a first-order model (4.8) if and only if A is
not singular and each Jordan block of A corresponding to an eigen value λ < 0 occurs an even
number of time.

We now state and demonstrate the equivalent of this result for second order models (4.7).

Theorem 4.7 (Representable mappings for a Momentum ResNet with linear residual functions –
General case). Let A ∈ Rd×d.

If A can be represented by a second-order model (4.7), then each Jordan block of A corresponding
to an eigen value λ < λε occurs an even number of time.

Reciprocally, if each Jordan block of A corresponding to an eigen value λ ≤ λε occurs an even
number of time, then A can be represented by a second-order model.

Proof. We refer to the arguments from Culver (1966) and use results from Gantmacher (1959)
for the proof.

Suppose that A can be represented by a second-order model (4.7). This means that there exists
X ∈ Rd×d such that A = fε(X ). The fact that X is real implies that its Jordan blocks are:

(λ− zk)ak , zk ∈ R
(λ− zk)bk and (λ− z̄k)bk , zk ∈ C− R.

Let λk = fε(zk) be an eigenvalue of A such that λk < λε. Necessarily, zk ∈ C−R, and f ′ε(zk) ̸= 0
thanks to Lemma 4.6. We then use Theroem 9 from Gantmacher (1959) (p. 158) to get that the
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Jordan blocks of A corresponding to λk are

(λ− fε(zk))bk and (λ− fε(z̄k))bk .

Since fε(z̄k) = fε(zk) = λk, we can conclude that the Jordan blocks of A corresponding λk < λε
occur an even number of time.

Now, suppose that each Jordan block of A corresponding to an eigen value λ ≤ λε occurs an
even number of times. Let λk be an eigenvalue of A.

• If λk ∈ C− R we can write, because fε is surjective (proved in Lemma 4.5), λk = fε(zk)
with zk ∈ C− R. Necessarily, because A is real, the Jordan blocks of A corresponding to
λk have to be associated to those corresponding to λ̄k. In addition, thanks to Lemma 4.6,
f ′ε(zk) ̸= 0

• If λk < λε, we can write, because fε is surjective, λk = fε(zk) = fε(z̄k) with zk ∈ C− R.
In addition, f ′ε(zk) ̸= 0.

• If λk > λε, then there exists zk ∈ R such that λk = fε(zk) and f ′ε(zk) ̸= 0 because, if xε is
such that fε(xε) = λε, we have that f ′ε > 0 on ]xε,+∞[.

• If λk = λε, there exists zk ∈ R such that λk = fε(zk). Necessarily, f ′ε(zk) = 0 but
f ′′ε (zk) ̸= 0.

This shows that the Jordan blocks of A are necessarily of the form

(λ− fε(zk))bk and (λ− fε(z̄k))bk , zk ∈ C− R
(λ− fε(zk))ak , zk ∈ R, fε(zk) ̸= λε

(λ− λε)ck and (λ− λε)ck .

Let Y ∈ Rd×d be such that its Jordan blocks are of the form

(λ− zk)bk and (λ− z̄k)bk , zk ∈ C− R, f ′ε(zk) ̸= 0

(λ− zk)ak , zk ∈ R, fε(zk) ̸= λε, f
′
ε(zk) ̸= 0

(λ− zk)2ck , zk ∈ R, fε(zk) = λε.

Then again by the use of Theorem 7 from Gantmacher (1959) (p. 158), because if fε(zk) = λε
with zk ∈ R, f ′′ε (zk) ̸= 0, we have that fε(Y ) is similar to A. Thus A writes A = P−1fε(Y )P =
fε(P

−1Y P ) with P ∈ GLd(R). Then, X = P−1Y P satisfies X ∈ Rd×d and fε(X) = A.

4.B Additional theoretical results

4.B.1 On the convergence of the solution of a second order model when ε →
∞

Proposition 4.8 (Convergence of the solution when ε −→ +∞). We let x∗ (resp. xε) be the
solution of ẍ = f(x, θ) (resp. ẍ+ 1

ε ẋ = f(x, θ)) on [0, T ], with initial conditions x∗(0) = xε(0) = x0
and ẋ∗(0) = ẋε(0) = v0. Then xε converges uniformly to x∗ as ε −→ +∞.
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Proof. The equation ẍ+ 1
ε ẋ = f(x, θ) with xε(0) = x0, ẋε(0) = v0 writes in phase space (x, v)

{
ẋ = v, x(0) = x0

v̇ = f(x, θ)− v
ε , v(0) = v0.

It then follows from the Cauchy-Lipschitz Theorem with parameters (Perko, 2013, Theorem
2, Chapter 2) that the solutions of this system are continuous in the parameter 1

ε . That is xε
converges uniformly to x∗ as ε −→ +∞.

4.B.2 Universality of Momentum ResNets

Proposition 4.9 (When v0 is free any mapping can be represented). Consider h : Rd −→ Rd,
and the ODE

ẍ+ ẋ = 0

(x(0), ẋ(0)) = (x0,
h(x0)− x0
1− 1/e

)

Then φ1(x0) = h(x0).

Proof. This is because the solution is φt(x0) = x0 − v0(e−t − 1).

4.B.3 Non-universality of Momentum ResNets when v0 = 0

Proposition 4.10 (When v0 = 0 there are mappings that cannot be learned if the equation is
autonomous.). When d = 1, consider the autonomous ODE

εẍ+ ẋ = f(x)

(x(0), ẋ(0)) = (x0, 0)
(4.13)

If there exists x0 ∈ R+∗ such that h(x0) ≤ −x0 and x0 ≤ h(−x0) then h cannot be represented
by (4.13).

This in particular proves that x 7→ λx for λ ≤ −1 cannot be represented by this ODE with initial
conditions (x0, 0).

Proof. Consider such an x0 and h. Since φ1(x0) = h(x0) ≤ −x0, that φ0(x0) = x0 and that
t 7→ φt(x0) is continuous, we know that there exists t0 ∈ [0, 1] such that φt0(x0) = −x0. We
denote x(t) = φt(x0), solution of

ẍ+
1

ε
ẋ = f(x)

Since d = 1, one can write f as a derivative: f = −E′. The energy Em = 1
2 ẋ

2 + E satisfies:

Ėm = −1

ε
ẋ2

So that

Em(t0)− Em(0) = −1

ε

∫ t0

0
ẋ2
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In other words:
1

2
v(t0)

2 +
1

ε

∫ t0

0
ẋ2 + E(−x0) = E(x0)

So that E(−x0) ≤ E(x0) We now apply the exact same argument to the solution starting at
x1 = −x0. Since x0 ≤ h(−x0) = h(x1) there exists t1 ∈ [0, 1] such that φt1(x1) = x0. So that:

1

2
v(t1)

2 +
1

ε

∫ t1

0
ẋ2 + E(x0) = E(−x0)

So that E(x0) ≤ E(−x0). We get that

E(x0) = E(−x0)

This implies that ẋ = 0 on [0, t0], so that the first solution is constant and x0 = −x0 which is
absurd because x0 ∈ R∗.

4.B.4 When v0 = 0 there are mappings that can be represented by a second-order
model but not by a first-order one.

Proposition 4.11. There exits f such that the solution of

ẍ+
1

ε
ẋ = f(x)

with initial condition (x0, 0) at time 1 is

x(1) = −x0 × exp(− 1

2ε
)

Proof. Consider the ODE

ẍ+
1

ε
ẋ = (−π2 − 1

4ε2
)x (4.14)

with initial condition (x0, 0) The solution of this ODE is

x(t) = x0e
− t

2ε (cos(πt) +
1

2πε
sin(πt))

which at time 1 gives:
x(1) = −x0e−

1
2ε

4.B.5 Orientation preservation of first-order ODEs

Proposition 4.12 (The homeomorphisms represented by (4.5) are orientation preserving.). If
K ⊂ Rd is a compact set and h : K −→ Rd is a homeomorphism represented by (4.5), then h is in
the connected component of the identity function on K for the ∥.∥∞ topology.

We first prove the following:

Lemma 4.13. Consider K ⊂ Rd a compact set. Suppose that ∀x ∈ K, Φt(x) is defined for all
t ∈ [0, 1]. Then

C = {Φt(x) | x ∈ K, t ∈ [0, 1]}
is compact as well.
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Proof. We consider (Φtn(xn))n∈N a sequence in C. Since K × [0, 1] is compact, we can extract
sub sequences (tφ(n))n∈N, (xφ(n))n∈N that converge respectively to t0 and x0. We denote them
(tn)n∈N and (xn)n∈N again for simplicity of the notations. We have that:

∥Φtn(xn)− Φt(x)∥ ≤ ∥Φtn(xn)− Φtn(x)∥+ ∥Φtn(x)− Φt(x)∥.

Thanks to Gronwall’s lemma, we have

∥Φtn(xn)− Φtn(x)∥ ≤ ∥xn − x∥ exp (ktn),

where k is f ’s Lipschitz constant. So that ∥Φtn(xn)− Φtn(x)∥ −→ 0 as n −→∞. In addition, it is
obvious that ∥Φtn(x)− Φt(x)∥ −→ 0 as n −→∞. We conclude that

Φtn(xn) −→ Φt(x) ∈ C,

so that C is compact.

Proof. Let’s denote by H the set of homeomorphisms defined on K. The application

Ψ : [0, 1] −→ H

defined by
Ψ(t) = Φt

is continuous. Indeed, we have for any x0 in Rd that

∥Φt+ε(x0)− Φt(x0)∥ = ∥
∫ t+ε

t
f(Φs(x0))ds∥ ≤ εMf ,

where Mf bounds the continuous function f on C defined in lemma 4.13. Since Mf does not
depend on x0, we have that

∥Φt+ε − Φt∥∞ −→ 0

as ε −→ 0, which proves that Ψ is continuous. Since Ψ(0) = IdK , we get that ∀t ∈ [0, 1], Φt is
connected to IdK .

4.B.6 On the linear mappings represented by autonomous first order ODEs in
dimension 1

Consider the autonomous ODE
ẋ = f(x), (4.15)

Theorem 4.14 (Linearity). Suppose d = 1. If (4.15) represents a linear mapping x 7→ ax at
time 1, we have that f is linear.

Proof. If a = 1, consider some x0 ∈ R. Since Φ1(x0) = x0 = Φ0(x0), there exists, by Rolle’s
Theorem a t0 ∈ [0, 1] such that ẋ(t0) = 0. Then f(x(t0)) = 0. But since the constant solution
y = x(t0) then solves ẏ = f(y), y(0) = x(t0), we get by the unicity of the solutions that
x(t0) = y(0) = x(1) = y(1− t0) = x0. So that f(x0) = f(x(t0)) = 0. Since this is true for all x0,
we get that f = 0. We now consider the case where a ̸= 1 and a > 0. Consider some x0 ∈ R∗. If
f(x0) = 0, then the solution constant to x0 solves (4.14), and thus cannot reach ax0 at time 1
because a ̸= 1. Thus, f(x0) ̸= 0 if x0 ̸= 0. Second, if the trajectory starting at x0 ∈ R∗ crosses
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0 and f(0) = 0, then by the same argument we know that x0 = 0, which is absurd. So that,
∀x0 ∈ R∗, ∀t ∈ [0, 1], f(Φt(x0)) ̸= 0 . We can thus rewrite (4.14) as

ẋ

f(x)
= 1. (4.16)

Consider F a primitive of 1
f . Integrating (4.16), we get

F (ax0)− F (x0) =
∫ 1

0
F ′(x(t))ẋ(t)dt = 1.

In other words, ∀x ∈ R∗:
F (ax) = F (x) + 1.

We derive this equation and get:
af(x) = f(ax).

This proves that f(0) = 0. We now suppose that a > 1. We also have that

anf(
x

an
) = f(x).

But when n −→∞, f( x
an ) =

x
an f

′(0) + o( 1
an ) so that

f(x) = f ′(0)x

and f is linear. The case a < 1 treats similarly by changing an to a−n.

4.B.7 There are mappings that are connected to the identity that cannot be
represented by a first order autonomous ODE

In bigger dimension, we can exhibit a matrix in GL+
d (R) (and hence connected to the identity)

that cannot be represented by the autonomous ODE (4.15).

Proposition 4.15 (A non-representable matrix). Consider the matrix

A =

(
−1 0
0 −λ

)
,

where λ > 0 and λ ̸= 1. Then A ∈ GL+
2 (R)−GL2(R)2 and A cannot be represented by (4.15).

Proof. The fact that A ∈ GL+
2 (R)−GL2(R)2 is because A has two single negative eigenvalues,

and because det(A) = λ > 0. We consider the point (0, 1). At time 1, it has to be in (0,−λ).
Because the trajectory are continuous, there exists 0 < t0 < 1 such that the trajectory is at (x, 0)
at time t0, and thus at (−x, 0) at time t0 + 1, and again at (x, 0) at time t0 + 2. However, the
particle is at (0, λ2) at time 2. All of this is true because the equation is autonomous. Now, we
showed that trajectories starting at (0, 1) and (0, λ2) would intersect at time t0 at (x, 0), which
is absurd. Figure 4.11 illustrates the paradox.
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(0,1).
(x,0)

(0, − λ)

(−x,0)

(0,λ2)

..

.

.

Figure 4.11: Illustration of Proposition 4.15. The points starting at (0, 1) and (0, λ2) are distinct
but their associated trajectories would have to intersect in (x, 0), which is impossible.

4.C Exact multiplication

We here present the algorithm from Maclaurin et al. (2015). In their paper, the authors represent
γ as a rational number, γ = n

d ∈ Q. The information is lost during the integer division of vn
by d in (4.2). The store this information, it is sufficient to store the remainder r of this integer
division. r is stored in an “information buffer” i. To update i, one has to left-shift the bits in i
by multiplying it by n before adding r.

Momentum Residual Neural Networks

Proof. The fact that A 2 GL+
2 (R)�GL2(R)2 is because A has two single negative eigenvalues, and because det(A) =

� > 0. We consider the point (0, 1). At time 1, it has to be in (0,��). Because the trajectory are continuous, there exists
0 < t0 < 1 such that the trajectory is at (x, 0) at time t0, and thus at (�x, 0) at time t0 + 1, and again at (x, 0) at time
t0 + 2. However, the particle is at (0,�2) at time 2. All of this is true because the equation is autonomous. Now, we showed
that trajectories starting at (0, 1) and (0,�2) would intersect at time t0 at (x, 0), which is absurd. Figure 11 illustrates the
paradox.

(0,1).
(x,0)

(0, � �)

(�x,0)

(0,�2)

..

.

.

Figure 11. Illustration of Proposition 10. The points starting at (0, 1) and (0,�2) are distinct but their associated trajectories would have
to intersect in (x, 0), which is impossible.

C. Exact multiplication

Algorithm 1 Exactly reversible multiplication by a ratio, from Maclaurin et al. (2015)

1: Input: Information buffer i, value c, ratio n/d
2: i = i⇥ d
3: i = i + (c mod d)
4: c = c ÷ d
5: c = c⇥ n
6: c = c + (i mod n)
7: i = i ÷ n
8: return updated buffer i, updated value c

We here present the algorithm from Maclaurin et al. (2015). In their paper, the authors represent � as a rational number,
� = n

d 2 Q. The information is lost during the integer division of vn by d in (2). The store this information, it is sufficient
to store the remainder r of this integer division. r is stored in an “information buffer” i. To update i, one has to left-shift the
bits in i by multiplying it by n before adding r. The entire procedure is illustrated in Algorithm 1 from Maclaurin et al.
(2015).

4.D Experiment details

In all our image experiments, we use Nvidia Tesla V100 GPUs.

For our experiments on CIFAR-10 and 100, we used a batch-size of 128 and we employed
SGD with a momentum of 0.9. The training was done over 220 epochs. The initial learning
rate was 0.01 and was decayed by a factor 10 at epoch 180. A constant weight decay was set
to 5 × 10−4. Standard inputs preprocessing as proposed in Pytorch (Paszke et al., 2017) was
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performed.

For our experiments on ImageNet, we used a batch-size of 256 and we employed SGD with a
momentum of 0.9. The training was done over 100 epochs. The initial learning rate was 0.1 and
was decayed by a factor 10 every 30 epochs. A constant weight decay was set to 10−4. Standard
inputs preprocessing as proposed in Pytorch (Paszke et al., 2017) was performed: normalization,
random croping of size 224× 224 pixels, random horizontal flip.

For our experiments in the continuous framework, we adapted the code made available by
Chen et al. (2018) to work on the CIFAR-10 data set and to solve second order ODEs. We used
a batch-size of 128, and used SGD with a momentum of 0.9. The initial learning rate was set to
0.1 and reduced by a factor 10 at iteration 60. The training was done over 120 epochs.

For the learning to optimize experiment, we generate a random Gaussian matrix D of size
16× 32. The columns are then normalized to unit variance. We train the networks by stochastic
gradient descent for 10000 iterations, with a batch-size of 1000 and a learning rate of 0.001. The
samples yq are generated as follows: we first sample a random Gaussian vector ỹq, and then we
use yq =

ỹq
∥D⊤ỹq∥∞ , which ensures that every sample verify ∥D⊤yq∥∞ = 1. This way, we know

that the solution x∗ is zero if and only if λ ≥ 1. The regularization is set to λ = 0.1.

4.E Backpropagation for Momentum ResNets

In order to backpropagate the gradient of some loss in a Momentum ResNet, we need to formulate
an explicit version of (4.2). Indeed, (4.2) writes explicitly

vn+1 = γvn + (1− γ)f(xn, θn)
xn+1 = xn + (γvn + (1− γ)f(xn, θn)).

(4.17)

Writing z = (x, v), the backpropagation for Momentum ResNets then writes, for some loss
L

∇zk−1
L =

[
I + (1− γ)∂xf(xk−1, θk−1) γI
(1− γ)∂xf(xk−1, θk−1) γI

]T
∇zkL

∇θk−1
L = (1− γ)

[
∂θf(xk−1, θk−1)
∂θf(xk−1, θk−1)

]T
∇zkL.

We implement these formula to obtain a custom Jacobian-vector product in Pytorch.

4.F Additional figures

4.F.1 Learning curves on CIFAR-10

We here show the learning curves when training a ResNet-101 and a Momentum ResNet-101 on
CIFAR-10.
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Figure 4.12: Test error and test loss as a function of depth on CIFAR-10 with a ResNet-101 and
two Momentum ResNets-101.
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5
Sinkformers: Transformers with Doubly
Stochastic Attention

Attention based models such as Transformers involve pairwise interactions between data points,
modeled with a learnable attention matrix. Importantly, this attention matrix is normalized
with the SoftMax operator, which makes it row-wise stochastic. In this chapter, we propose
instead to use Sinkhorn’s algorithm to make attention matrices doubly stochastic. We call
the resulting model a Sinkformer. We show that the row-wise stochastic attention matrices in
classical Transformers get close to doubly stochastic matrices as the number of epochs increases,
justifying the use of Sinkhorn normalization as an informative prior. On the theoretical side, we
show that, unlike the SoftMax operation, this normalization makes it possible to understand the
iterations of self-attention modules as a discretized gradient-flow for the Wasserstein metric. We
also show in the infinite number of samples limit that, when rescaling both attention matrices and
depth, Sinkformers operate a heat diffusion. On the experimental side, we show that Sinkformers
enhance model accuracy in vision and natural language processing tasks. In particular, on 3D
shapes classification, Sinkformers lead to a significant improvement.
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5.1 Introduction

The Transformer (Vaswani et al., 2017), an architecture that relies entirely on attention mech-
anisms (Bahdanau et al., 2014a), has achieved state of the art empirical success in natural
language processing (NLP) (Brown et al., 2020; Radford et al., 2019; Wolf et al., 2019) as
well as in computer vision (Dosovitskiy et al., 2020; Zhao et al., 2020; Zhai et al., 2021; Lee
et al., 2019a). As the key building block of the Transformer, the self-attention mechanism takes
the following residual form (Yun et al., 2019) given a n-sequence (x1, x2, ..., xn), embedded in
dimension d:

xi ← xi +
n∑

j=1

K1
i,jWV xj , (5.1)

where K1 := SoftMax(C) with Ci,j := (WQxi)
⊤WKxj = x⊤i W

⊤
QWKxj . Here, WQ,WK ∈ Rm×d

and WV ∈ Rd×d are the query, key and value matrices. The SoftMax operator can be seen as
a normalization of the matrix K0 := exp(C) as follows: K1

ij := K0
ij/
∑n

l=1K
0
il for all i and j.

Importantly, the matrix K1 is row-wise stochastic: its rows all sum to 1.

In this work, we propose to take the normalization process further by successively normalizing
the rows and columns of K0. This process is known to provably converge to a doubly stochastic
matrix (i.e., whose rows and columns both sum to 1) and is called Sinkhorn’s algorithm (Sinkhorn,
1964; Cuturi, 2013; Peyré et al., 2019). We denote the resulting doubly stochastic matrix K∞.
Intuitively, such a normalization relies on a democratic principle where all points are matched
one to another with different degrees of intensity, so that more interactions are considered than
with the SoftMax normalization, as shown in Figure 5.1.

K0 K1 K∞

Figure 5.1: Illustration of the different normalizations of attention matrices. We form
two point clouds (WQxi)1≤i≤10 (green) and (WKxj)1≤i≤10 (red). For k ∈ {0, 1,∞}, the width of
the line connecting xi to xj is Kk

i,j . We only display connections with Kk
i,j ≥ 10−12. For K0, one

interaction dominates. For K1 (SoftMax), one cluster is ignored. For K∞ (Sinkhorn), all points
are involved in an interaction.
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We call our Transformer variant where the SoftMax is replaced by Sinkhorn a Sinkformer. Since
Sinkhorn’s first iteration coincides exactly with the SoftMax, Sinkformers include Transformers
as a special case. Our modification is differentiable, easy to implement using deep learning
libraries, and can be executed on GPUs for fast computation. Because the set of row-wise
stochastic matrices contains the set of doubly stochastic matrices, the use of doubly stochastic
matrices can be interpreted as a prior. On the experimental side, we confirm that doubly
stochastic attention leads to better accuracy in several learning tasks. On the theoretical side,
doubly stochastic matrices also give a better understanding of the mathematical properties of
self-attention maps.

To summarize, we make the following contributions.

• We show empirically that row-wise stochastic matrices seem to converge to doubly stochastic
matrices during the learning process in several classical Transformers (Figure 5.2). Motivated
by this finding, we then introduce the Sinkformer, an extension of the Transformer in which
the SoftMax is replaced by the output of Sinkhorn’s algorithm. In practice, our model is
parametrized by the number of iterations in the algorithm, therefore interpolating between the
Transformer and the Sinkformer.

• On the theoretical side, we show that Transformers and Sinkformers can be viewed as models
acting on discrete distributions, and we show under a symmetry assumption that Sinkformers
can be seen in the infinite depth limit as a Wasserstein gradient flow for an energy minimization
(Proposition 5.3). We also show that the classical Transformer with the SoftMax operator
cannot be interpreted as such a flow (Proposition 5.4). To the best of our knowledge, this is
the first time such a connection is established. We also prove that in the infinite number of
particles limit (when n goes to infinity), the iterations of Sinkformers converge to the heat
equation (Theorem 5.5), while the corresponding equation for Transformers is nonlinear and
nonlocal (Proposition 5.6).

• On the experimental side, we show that Sinkformers lead to a significant accuracy gain compared
to Transformers on the ModelNet 40 3D shapes classification task. We then demonstrate better
performance of Sinkformers on the NLP IMDb dataset for sentiment analysis and IWSLT’14
German to English neural machine translation tasks. Sinkformers also achieve a better accuracy
than Vision Transformers on image classification tasks. Therefore, the proposed method is
capable of enhancing the performance of transformers in a wide range of applications.

5.2 Background and related works

Transformers. Proposed by Vaswani et al. (2017), the Transformer is a fully attention-based
architecture. Originally designed to process sequences for natural language processing (NLP),
many variants have since been developed such as Vision Transformers (Dosovitskiy et al., 2020;
Zhai et al., 2021), Set Transformers (Lee et al., 2019a) or Point Cloud Transformers (Zhao et al.,
2020). The Transformer and its variants are based on an encoder-decoder structure, where the
decoder can have a more or less complex form. The encoder is fully self -attention based. After
embedding and concatenating with positional encoding the original input sequence, the encoder
uses a series of residual blocks that iterates relation (5.1) followed by a feed forward neural
network applied to each xi independently. In its most complex form such as in neural machine
translation, the decoder combines a self-attention based mechanisms and a cross attention one,
meaning that it is given access to the encoder via another multi-head attention block.
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Sinkhorn and Attention. To the best of our knowledge, using Sinkhorn’s algorithm in
Transformers has been done once in a different context (Tay et al., 2020). The authors propose
to learn efficient and sparse attention using a differentiable algorithm for sorting and rearranging
elements in the input sequence. For this purpose, they introduce a sorting network to generate
a doubly-stochastic matrix (that can be seen as a relaxed version of a permutation matrix)
and use it to sort the sequence in a differentiable fashion. Mialon et al. (2021a) propose an
embedding for sets of features in Rd based on Sinkhorn’s algorithm, by using the regularized
optimal transport plan between data points and a reference set. Niculae et al. (2018) use doubly
stochastic attention matrices in LSTM-based encoder-decoder networks but they use Frank-Wolfe
or active set methods to compute the attention matrix. None of these works use Sinkhorn on
self-attention maps in Transformers and provide its theoretical analysis, as we do.

Impact of bi-normalization. Theoretical properties of kernels K, which attention is an
instance of, can also be studied through the operator f 7→ f −Kf . Bi-normalization of kernels
over manifolds have already been studied in the literature, on uniform measures (Singer, 2006),
weighted measures (Hein et al., 2007) and in a more general setup with associated diffusion
operators (Ting et al., 2011). Milanfar (2013) proposes to approximate smoothing operators
by doubly stochastic matrices using Sinkhorn’s updates, leading to better performance in data
analysis and signal processing. Importantly, the works of Marshall and Coifman (2019) and
Wormell and Reich (2021) exactly introduce a normalization that is based on Sinkhorn’s algorithm.
They prove that this method models a Langevin diffusion and leads to the approximation of a
symmetric operator. They also show that convergence to this operator is faster with Sinkhorn
normalization than with the SoftMax normalization. In section 5.5, we adopt a similar point of
view with a parametrized cost and show that different normalizations result in different partial
differential equations (PDEs) in the infinite number of particles limit.

Infinite depth limit. Studying deep residual neural networks (ResNets) (He et al., 2016a)
in the infinitesimal step-size regime (or infinite depth limit) has recently emerged as a new
framework for analyzing their theoretical properties. The ResNet equation

xi ← xi + T (xi) (5.2)

can indeed be seen as a discretized Euler scheme with unit step size of the ordinary differential
equation (ODE) ẋi = T (xi) (Weinan, 2017b; Chen et al., 2018; Teh et al., 2019; Sun et al., 2018;
Weinan et al., 2019; Lu et al., 2018; Ruthotto and Haber, 2019; Sander et al., 2021). In section
5.4, we adopt this point of view on residual attention layers in order to get a better theoretical
understanding of attention mechanisms. This is justified by the fact that, for instance, GPT-3
(Brown et al., 2020) has 96 layers.

Neural networks on measures. The self-attention mechanism (5.1) acts on sets {xi}i where
the ordering of the elements does not matter. An equivalent way to model such invariant
architectures is to consider them as acting on probability measures or point clouds of varying
cardinality (De Bie et al., 2019; Vuckovic et al., 2021; Zweig and Bruna, 2021). Specifically,
a collection of points (xi)1≤i≤n, where xi ∈ Rd, can also be seen as a discrete measure on Rd:
µ := 1

n

∑n
i=1 δxi ∈ M(Rd), where M(Rd) is the set of probability measures on Rd. A map Tµ

then acts on µ through F (µ) := 1
n

∑n
i=1 δTµ(xi). One notable interest of such a point of view is

to consider the evolution of non ordered sets of points. Another is to consider the mean field
(or large sample) limit, that is when n→∞, to conduct theoretical analysis (Zweig and Bruna,
2021) as when analyzing the SGD properties in the mean-field limit (Song et al., 2018).
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5.3 Sinkformers

We now introduce Sinkformers, a modification of any Transformer by replacing the SoftMax
operator in the attention modules by Sinkhorn’s algorithm.

Attention matrices during training. In Transformers, attention matrices are row-wise
stochastic. A natural question is how the sum over columns evolve during training. On 3 different
models and 3 different learning tasks, we calculated the sum over columns of attention matrices
in Transformers. We find out that the learning process makes the attention matrices more and
more doubly stochastic, as shown in Figure 5.2.

0 50000

Sorted columns

0.1

1

10

S
u

m
of

co
effi

ci
en

ts

Vision
Transformer

1

4

8

12

16

20

0 5000

Sorted columns

0.1

1

10

Fairseq
Transformer

1

2

3

4

5

6

0 10000

Sorted columns

10−6

10−3

1

Point Cloud
Transformer

10

30

50

70

110

160

Figure 5.2: Sum over columns of attention matrices at different training epochs (color) when
training, from left to right, a ViT on MNIST (section 5.6.4), a fairseq Transformer on IWSLT’14
(section 5.6.3), and a Point Cloud Transformer on Model Net 40 (section 5.6.1). The majority
of columns naturally sum closely to 1.

Thus, row-wise stochastic attention matrices seem to approach doubly stochastic matrices during
the learning process in classical Transformers. Therefore, it seems natural to impose double
stochasticity as a prior and study theoretically and experimentally the resulting model. A process
to obtain such matrices which extends the SoftMax is Sinkhorn’s algorithm.

Sinkhorn’s algorithm. Given a matrix C ∈ Rn×n, and denoting K0 ∈ Rn×n such that
K0 = exp(C), Sinkhorn’s algorithm (Sinkhorn, 1964; Cuturi, 2013; Peyré et al., 2019) iterates,
starting from K0:

K l+1 =

{
NR(K

l) if l is even
NC(K

l) if l is odd, (5.3)

where NR and NC correspond to row-wise and column-wise normalizations: (NR(K))i,j :=
Ki,j∑n
l=1 Ki,l

and (NC(K))i,j :=
Ki,j∑n
l=1 Kl,j

. We denote the resulting scaled matrix limit K∞ :=

Sinkhorn(C). Note that it is doubly stochastic in the sense that K∞⊮n = ⊮n and K∞⊤⊮n = ⊮n.
The operations in (5.3) are perfectly suited for being executed on GPUs (Charlier et al., 2021;
Cuturi, 2013).

Sinkformers. For simplicity, we consider a one head attention block that iterates equation
(5.1). Note that K1 := SoftMax(C) is precisely the output of Sinkhorn’s algorithm (5.3) after
1 iteration. In this chapter, we propose to take Sinkhorn’s algorithm several steps further
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until it approximately converges to a doubly stochastic matrix K∞. This process can be easily
implemented in practice, simply by plugging Sinkhorn’s algorithm into self-attention modules
in existing architectures, without changing the overall structure of the network. We call the
resulting drop-in replacement of a Transformer a Sinkformer. It iterates

xi ← xi +
n∑

j=1

K∞
i,jWV xj . (5.4)

In the next two sections 5.4 and 5.5, we investigate the theoretical properties of Sinkformers. We
exhibit connections with energy minimization in the space of measures and the heat equation,
thereby proposing a new framework for understanding attention mechanisms. All our experiments
are described in Section 5.6 and show the benefits of using Sinkformers in a wide variety of
applications.

Computational cost and differentiation. Turning a Transformer into a Sinkformer simply
relies on replacing the SoftMax by Sinkhorn, i.e., substituting K1 with K∞. In practice, we use
a finite number of Sinkhorn iterations and therefore use K l, where l is large enough so that K l is
almost doubly stochastic. Doing l iterations of Sinkhorn takes l times longer than the SoftMax.
However, this is not a problem in practice because Sinkhorn is not the main computational
bottleneck and because only a few iterations of Sinkhorn are sufficient (typically 3 to 5) to
converge to a doubly stochastic matrix. As a result, the practical training time of Sinkformers is
comparable to regular Transformers, as detailed in our experiments.

Sinkhorn is perfectly suited for backpropagation (automatic differentiation), by differentiating
through the operations of (5.3). The Jacobian of an optimization problem solution can also be
computed using the implicit function theorem (Griewank and Walther, 2008b; Krantz and Parks,
2012; Blondel et al., 2021) instead of backpropagation if the number of iterations becomes a
memory bottleneck. Together with Sinkhorn, implicit differentiation has been used by Luise et al.
(2018) and Cuturi et al. (2020).

Invariance to the cost function. Recall that in practice one has Ci,j = (WQxi)
⊤WKxj . An

important aspect of Sinkformers is that their output is unchanged if the cost is modified with
non interacting terms, as the next proposition shows.

Proposition 5.1. Let C ∈ Rn×n. Consider, for (f, g) ∈ Rn × Rn the modified cost function
C̃i,j := Ci,j + fi + gj. Then Sinkhorn(C) = Sinkhorn(C̃).

A proof is available in Appendix 5.A. A consequence of this result is that one can consider the
cost C̃i,j := −1

2∥WQxi −WKxj∥2 instead of Ci,j = (WQxi)
⊤WKxj , without affecting K∞. A

Transformer using the cost C̃ is referred to as L2 self-attention, and is Lipschitz under some
assumptions (Kim et al., 2021) and can therefore be used as an invertible model (Behrmann
et al., 2019). For instance, we use C̃ in Proposition 5.6.

5.4 Attention and gradient flows

In this section, we make a parallel between self-attention modules in Sinkformers and gradient
flows in the space of measures. We denoteM(Rd) the probability measures on Rd and C(Rd) the
continuous functions on Rd. We denote ∇ the gradient operator, div the divergence, and ∆ the
Laplacian, that is ∆ = div(∇).
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Residual maps for attention. We consider a one-head attention block operating with different
normalizations. We consider the continuous counterparts of the attention matrices seen in the
previous section. We denote c(x, x′) := (WQx)

⊤WKx
′ and k0 := exp(c). For some measure

µ ∈ M(Rd), we define the SoftMax operator on the cost c by k1(x, x′) = SoftMax(c)(x, x′) :=
k0(x,x′)∫

k0(x,y)dµ(y)
. Similarly, we define Sinkhorn’s algorithm as the following iterations, starting from

k0 = exp(c):

kl+1(x, x′) =





kl(x,x′)∫
kl(x,y)dµ(y)

if l is even
kl(x,x′)∫

kl(y,x)dµ(y)
if l is odd.

(5.5)

We denote k∞ := Sinkhorn(c) the resulting limit. Note that if µ is a discrete measure supported
on a n sequence of particles (x1, x2, ..., xn), µ = 1

n

∑n
i=1 δxi , then for all (i, j), k0(xi, xj) = K0

i,j ,
k1(xi, xj) = K1

i,j and k∞(xi, xj) = K∞
i,j , so that k0, k1 and k∞ are indeed the continuous

equivalent of the matrices K0, K1 and K∞ respectively.

Infinitesimal step-size regime. In order to better understand the theoretical properties of
attention matrices in Transformers and Sinkformers, we omit the feed forward neural networks
acting after each attention block. We consider a succession of attention blocks with tied weights
between layers and study the infinite depth limit where the output is given by solving a neural
ODE (Chen et al., 2018). In this framework, iterating the Transformer equation (5.1), the ResNet
equation (5.2) and the Sinkformer equation (5.4) corresponds to a Euler discretization with
step-size 1 of the ODEs

ẋi = Tµ(xi) for all i, (5.6)

where xi(t) is the position of xi at time t. For an arbitrary measure µ ∈ M(Rd), these ODEs
can be equivalently written as a continuity equation (Renardy and Rogers, 2006)

∂tµ+ div(µTµ) = 0. (5.7)

When Tµ is defined by the ResNet equation (5.2), Tµ = T does not depend on µ. It defines an
advection equation where the particles do not interact and evolve independently. When Tµ is
defined by the Transformer equation (5.1) or Sinkformer equation (5.4), Tµ has a dependency in
µ and the particles interact: the local vector field depends on the position of the other particles.
More precisely we have in this case T 1

µ(x) =
∫
k1(x, x′)WV x

′dµ(x′) for the Transformer and
T∞
µ (x) =

∫
k∞(x, x′)WV x

′dµ(x′) for the Sinkformer. It is easily seen that when µ is discrete we
recover the operators in equation (5.1) and (5.4).

Wasserstein gradient flows. A particular case of equation (5.7) is when Tµ is a gradient
with respect to the Wasserstein metric W2. Let F be a function on M(Rd). As is standard,
we suppose that F admits a first variation at all µ: there exists a function δF

δµ (µ) such that
d
dεF(µ+ ερ)|ε=0 =

∫
δF
δµ (µ)dρ for every perturbation ρ (Santambrogio, 2017). The Wasserstein

gradient of F at µ is then ∇WF(µ) := ∇( δFδµ (µ)). The minimization of F on the space of
measures corresponds to the PDE (5.7) with Tµ = −∇WF(µ). This PDE can be interpreted
as ruling the evolution of the measure µ of particles initially distributed according to some
measure µ0, for which the positions x(t) follow the flow ẋ = −∇WF(µ)(x), that minimizes the
global energy F . It corresponds to a steepest descent in Wasserstein space (Jordan et al., 1998).
In Proposition 5.3, we show in the symmetric kernel case that Sinkformers correspond to a
Wasserstein gradient flow for some functional F∞, while Transformers do not.
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Particular case. An example is when Tµ does not depend on µ and writes Tµ = −∇E where
E : Rd → R. Under regularity assumptions, a solution of (5.7) then converges to a local minimum
of E. This fits in the implicit deep learning framework (Bai et al., 2019), where a neural network
is seen as solving an optimization problem. A typical benefit of implicit models is that the
iterates xi do not need to be stored during the forward pass of the network because gradients
can be calculated using the implicit function theorem: it bypasses the memory storage issue of
GPUs (Wang et al., 2018; Peng et al., 2017; Zhu et al., 2017) during automatic differentiation.
Another application is to consider neural architectures that include an argmin layer, for which
the output is also formulated as the solution of a nested optimization problem (Agrawal et al.,
2019; Gould et al., 2016, 2019).

Flows for attention. Our goal is to determine the PDEs (5.7) defined by the proposed
attention maps. We consider the symmetric case, summarized by the following assumption:

Assumption 5.2. WK
⊤WQ =WQ

⊤WK = −WV

Assumption 5.2 means we consider symmetric kernels (by imposing WK
⊤WQ =WQ

⊤WK), and
that when differentiating x 7→ exp(c(x, x′)), we obtain − exp(c)WV . We show that, under this
assumption, the PDEs defined by k0 and k∞ correspond to Wasserstein gradient flows, whereas
it is not the case for k1. A particular case of imposing WK

⊤WQ =WQ
⊤WK is when WQ =WK .

This equality setting is studied by Kim et al. (2021), where the authors show that it leads to
similar performance for Transformers. Since imposing WK

⊤WQ = WQ
⊤WK is less restrictive,

it seems to be a natural assumption. Imposing W⊤
QWK = −WV is more restrictive, and we

detail the expressions for the PDEs associated to k0, k1, k∞ without this assumption in Appendix
5.A.

We have the following result.

Proposition 5.3 (PDEs associated to k0, k1, k∞). Suppose Assumption 5.2. Let F0 and F∞

:M(Rd) → R be such that F0(µ) := 1
2

∫
k0d(µ ⊗ µ) and F∞(µ) := −1

2

∫
k∞ log(k

∞

k0
)d(µ ⊗ µ).

Then k0, k1 and k∞ respectively generate the PDEs ∂µ
∂t + div(µT k

µ ) = 0 with T 0
µ := −∇WF0(µ),

T 1
µ := −∇[log(

∫
k0(·, x′)dµ(x′))] and T∞

µ := −∇WF∞(µ).

A proof is given in Appendix 5.A. Proposition 5.3 shows that k0 and k∞ correspond to Wasserstein
gradient flows. In addition, the PDE defined by k1 does not correspond to such a flow. More
precisely, we have the following result.

Proposition 5.4 (The SoftMax normalization does not correspond to a gradient flow). One has
that T 1

µ = −∇[log(
∫
k0(·, x′)dµ(x′))] is not a Wasserstein gradient.

A proof is given in Appendix 5.A, based on the lack of symmetry of T 1
µ . As a consequence of

these results, we believe this variational formulation of attention mechanisms for Sinkformers
(Proposition 5.3) provides a perspective for analyzing the theoretical properties of attention-based
mechanisms in light of Wasserstein gradient flow theory (Santambrogio, 2017). Moreover, it
makes it possible to interpret Sinkformers as argmin layers, which is promising in terms of
theoretical and experimental investigations, and which is not possible for Transformers, according
to Proposition 5.4.

Our results are complementary to the one of Dong et al. (2021), where the authors show that,
with no skip connections and without the feed forward neural network acting after each
attention block, the output of a Transformer converges doubly exponentially with depth to a
rank-1 matrix. On the contrary, we propose a complementary analysis by taking skip-connections
into account, as is standard in Transformers. Precisely because we consider such connections, we
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end up with very different behaviors. Indeed, as shown in the next section, our analysis reveals
that the relative signs for WK , WQ and WV imply very different behavior, such as aggregation
or diffusion. The dynamics obtained when considering skip connections are therefore richer than
a rank collapse phenomenon.

5.5 Attention and diffusion

In this section, we use the same notations as in section 5.4. We consider the mean-field limit,
where the measure µ has a density with respect to the Lebesgue measure. We are interested
in how the density of particles evolves for an infinite depth self-attention network with tied
weights between layers. We consider Assumption 5.2 and suppose that W⊤

KWQ is positive
semi-definite. For a bandwidth ε > 0, let k∞ε = Sinkhorn(c/ε), that is the attention kernel for
the Sinkformer with the cost c/ε. The mapping T∞

µ,ε : x 7→ 1
ε

∫
k∞ε (x, x′)WV x

′dµ(x′) corresponds
to the continuous version of the Sinkformer where we re-scale WQW

T
K = −WV by ε. To better

understand the dynamics of attention, we study the asymptotic regime in which the bandwidth
ε→ 0. In this regime, one can show that ∀x ∈ Rd, εT∞

µ,ε(x)→WV x (details in Appendix 5.A).
Thus, to go beyond first order, we study the modified map T∞

µ,ε = T∞
µ,ε− 1

εWV . A natural question
is the limit of this quantity when ε→ 0, and what the PDE defined by this limit is. We have the
following theorem.

Theorem 5.5 (Sinkformer’s PDE). Let µ ∈M(Rd). Suppose that µ is supported on a compact set
and has a density ρ ∈ C3(Rd). Suppose assumption 5.2 and that W⊤

KWQ is positive semi-definite.
Then one has in L2 norm as ε→ 0,

T
∞
µ,ε → T

∞
µ,0 := −

∇ρ
ρ
.

In this limit, the PDE ∂tρ+ div(ρT
∞
µ,0) = 0 rewrites

∂tρ = ∆ρ. (5.8)

A proof is available in Appendix 5.A, making use of Theorem 1 from Marshall and Coifman
(2019). We recover in Equation (5.8) the well-known heat equation.

We want to compare this result with the one obtained with the SoftMax normalization. In order
to carry a similar analysis, we make use of a Laplace expansion result (Tierney et al., 1989;
Singer, 2006). However, the kernel k1ε = SoftMax(c/ε) is not suited for using Laplace method
because it does not always have a limit when ε → 0. Thus, we consider the modified cost as
in Proposition 5.1, c̃(x, x′) = −∥WQx−WKx′∥2

2 . The kernel k̃1ε = SoftMax(c̃/ε), for which we can
now apply Laplace expansion result, then corresponds to the L2 self-attention formulation (Kim
et al., 2021). Note that thanks to Proposition 5.1, k̃∞ε = k∞ε : Sinkorn’s algorithm will have
the same output for both costs. To simplify the expressions derived, we assume that WQ and
WK are in Rd×d and are invertible. Similarly to the analysis conducted for Sinkformers, we
consider the mapping T 1

µ,ε : x 7→ 1
ε

∫
k̃1ε(x, x

′)WV x
′dµ(x′). When ε→ 0, we show that ∀x ∈ Rd,

εT 1
µ,ε(x)→ −W⊤

QWQx (details in Appendix 5.A). Thus, we consider T 1
µ,ε = T 1

µ,ε +
1
εW

⊤
QWQ. We

have the following result.

Proposition 5.6 (Transformer’s PDE). Let µ ∈ M(Rd). Suppose that µ is supported on a
compact set and has a density ρ ∈ C1(Rd). Suppose assumption 5.2 and that WQ and WK are in
Rd×d and are invertible. Then one has ∀x ∈ Rd,

T
1
µ,ε(x)→ T

1
µ,0(x) := −W⊤

QW
−1
K

∇ρ
ρ

(W−1
K WQx).
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In this limit, the PDE ∂tρ+ div(ρT
1
µ,0) = 0 rewrites

∂tρ = div(W⊤
QW

−1
K

∇ρ
ρ

(W−1
K WQ·)ρ) (5.9)

A proof is given in Appendix 5.A. While equation (5.8) corresponds to the heat equation, equation
(5.9) is different. First, it is nonlinear in ρ. Second, it is nonlocal since the evolution of the
density at x depends on the value of this density at location W−1

K WQx. Note that the linear and
local aspect of Sinkformer’s PDE on the one hand, and the nonlinear and nonlocal aspect of
Transformer’s PDE on the other hand, remain true without assuming WQ

⊤WK = −WV (details
in Appendix 5.A).

5.6 Experiments

We now demonstrate the applicability of Sinkformers on a large variety of experiments with
different modalities. We use Pytorch (Paszke et al., 2017) and Nvidia Tesla V100 GPUs. Our code
is open-sourced and is available at this address: https://github.com/michaelsdr/sinkformers.
All the experimental details are given in Appendix 5.C.

Practical implementation. In all our experiments, we use existing Transformer architectures
and modify the SoftMax operator in attention modules with Sinkhorn’s algorithm, which we
implement in log domain for stability (details in Appendix 5.B).

5.6.1 ModelNet 40 classification

The ModelNet 40 dataset (Wu et al., 2015) is composed of 40 popular object categories in 3D.
Transformers for point clouds and sets have been applied to the ModelNet 40 classification in
several works, such as Set Transformers (Lee et al., 2019a) or Point Cloud Transformers (Guo
et al., 2021).

Set Sinkformers. Set Transformers (Lee et al., 2019a) also have an encoder decoder structure
with different possibilities for defining attention-based set operations. We propose to focus on
the architecture that uses Induced Self Attention Block (ISAB), which bypasses the quadratic
time complexity of Self Attention Blocks (SAB). More details about this architecture can be
found in (Lee et al., 2019a). We reproduce the ModelNet 40 classification experiment using 5000
uniformly sampled points for each shape and use a Set Transformer and a Set Sinkformer with
two ISAB layers in the encoder and a decoder composed of a SAB and a Pooling by Multihead
Attention (PMA) module. While the reported test accuracy is of 87.8% using a Set Transformer,
we obtain as our best accuracy when performing 21 iterations of Sinkhorn algorithm within our
Sinkformer of 89.1%. Results are summarized in Table 5.1.
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Figure 5.3: Classification error and loss on ModelNet 40 when training a Set Transformer
and a Set Sinkformer with different number of iterations in Sinkhorn’s algorithm.
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Figure 5.4: Learning curves when training a Transformer and a Sinkformer on the Sentiment
Analysis task on the IMDb Dataset.

Moreover, we show in Figure 5.3 the learning curves corresponding to this experiment. Interest-
ingly, the number of iterations within Sinkhorn’s algorithm increases the accuracy of the model.
Note that we only consider an odd number of iterations since we always want to have row-wise
stochastic attention matrices to be consistent with the properties of the SoftMax.

Point Cloud Transformers. We also train Point Cloud Transformers (Guo et al., 2021) on
ModelNet 40. This architecture achieves accuracy comparable to the state of the art on this
dataset. We compare best and median test accuracy over 4 runs. Results are reported in Table
5.1, where we see that while the best test-accuracy is narrowly achieved for the Transformer, the
Sinkformer has a slightly better median accuracy.
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Table 5.1: Test accuracy for ModelNet 40 over 4 runs for each model.

Model Best Median Mean Worst
Set Transformer 87.8% 86.3% 85.8% 84.7%

Set Sinkformer 89.1% 88.4% 88.3% 88.1%

Point Cloud Transformer 93.2% 92.5% 92.5% 92.3%

Point Cloud Sinkformer 93.1% 92.8% 92.7% 92.5%

5.6.2 Sentiment Analysis

We train a Transformer (composed of an attention-based encoder followed by a max-pooling
layer) and a Sinkformer on the IMDb movie review dataset (Maas et al., 2011) for sentiment
analysis. This text classification task consists of predicting whether a movie review is positive or
negative. The learning curves are shown in Figure 5.4, with a gain in accuracy when using a
Sinkformer. In this experiment, Sinkhorn’s algorithm converges perfectly in 3 iterations (the
resulting attention matrices are doubly stochastic), which corresponds to the green curve. The
Sinkformer only adds a small computational overhead, since the training time per epoch is 4m
02s for the Transformer against 4m 22s for the Sinkformer.

5.6.3 Neural Machine Translation

We train a Transformer and its Sinkformer counterpart using the fairseq (Ott et al., 2019)
sequence modeling toolkit on the IWSLT’14 German to English dataset (Cettolo et al., 2014). The
architecture used is composed of an encoder and a decoder, both of depth 6. We plug Sinkhorn’s
algorithm only into the encoder part. Indeed, in the decoder, we can only pay attention to
previous positions in the output sequence. For this reason, we need a mask that prevents a
straightforward application of Sinkhorn’s algorithm. We demonstrate that even when using the
hyper-parameters used to optimally train the Transformer, we achieve a similar BLEU (Papineni
et al., 2002) over 6 runs. We first train a Transformer for 30 epochs. On the evaluation set,
we obtain a BLEU of 34.43. We then consider a Sinkformer with the weights of the trained
Transformer. Interestingly, even this un-adapted Sinkformer provides a median BLEU score
of 33.81. We then divide the learning rate by 10 and retrain for 5 additional epochs both the
Transformer and the Sinkformer to obtain a median BLEU of respectively 34.68 and 34.73 (Table
5.2). Importantly, the runtime for one training epoch is almost the same for both models: 2m
48s (Transformer) against 2m 52s (Sinkformer).

Table 5.2: Median BLEU score over 6 runs on the IWSLT’14 German to English dataset. The
score ⋆ is when evaluating the Sinkformer with the weights of the trained Transformer.

Model Epoch 30 Epoch 35
Transformer 34.43 34.68

Sinkformer 33.81⋆ 34.73
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5.6.4 Vision Transformers
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Figure 5.5: Train (dotted) and test (plain) ac-
curacy as a function of the number of epochs
when training a ViT and its Sinkformer coun-
terpart on the cats and dogs classification task
(median over 5 runs).

Vision Transformers (ViT) (Dosovitskiy et al., 2020) have recently emerged as a promising
architecture for achieving state of the art performance on computer vision tasks (Zhai et al.,
2021), using only attention based mechanisms by selecting patches of fixed size in images and
feeding them into an attention mechanism.

Cats and dogs classification. We train a ViT and its Sinkformer counterpart on a binary
cats and dogs image classification task. The evolution of the train and test accuracy is displayed
in Figure 5.5. The median test accuracy is 79.0% for the Transformer against 79.5% for the
Sinkformer, whereas the maximum test accuracy is 80.0% for the Transformer against 80.5%
for the Sinkformer. We also use 3 iterations in Sinkhorn’s algorithm which leads to a negligible
computational overhead (training time per epoch of 3m 25s for the Sinkformer against 3m 20s
for the Transformer).

Impact of the patch size on the final accuracy. We consider a one-layer and one-head
self-attention module on MNIST, with no additional layer. The purpose is to isolate the self-
attention module and study how its accuracy is affected by the choice of the patch size. Results
are displayed in Figure 5.6. We recall that a MNIST image is of size 28 × 28. When taking
only one patch of size 28, both models are equivalent because the attention matrix is of size
1. However, when the patch size gets smaller, the two models are different and the Sinkformer
outperforms the Transformer.

Conclusion

In this chapter, we presented the Sinkformer, a variant of the Transformer in which the SoftMax,
which leads to row-wise stochastic attention, is replaced by Sinkhorn’s algorithm, which leads to
doubly stochastic attention. This new model is motivated by the empirical finding that attention
matrices in Transformers get closer and closer to doubly stochastic matrices during the training
process. This modification is easily implemented in practice by simply replacing the SoftMax in
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Figure 5.6: Final test accuracy when training
a one layer and one head self attention module on
the MNIST dataset, with no feedforward neural
network, when varying the patch size (median
over 5 runs).

the attention modules of existing Transformers without changing any parameter in the network.
It also provides a new framework for theoretically studying attention-based mechanisms, such
as the interpretation of Sinkformers as Wasserstein gradient flows in the infinitesimal step size
regime or as diffusion operators in the mean-field limit. On the experimental side, Sinkformers
lead to better accuracy in a variety of experiments: classification of 3D shapes, sentiment analysis,
neural machine translation, and image classification.

In Section 5.A we give the proofs of all the Propositions and the Theorem. In Section 5.B we
present the implementation details of Sinkformers. Section 5.C gives details for the experiments
in the chapter.

5.A Proofs

5.A.1 Invariance to the cost function - Proof of Proposition 5.1

Proof. We use the variational formulation for Sinkhorn (Peyré et al., 2019):

Sinkhorn(C) = argmin
K⊮n=K⊤⊮n=⊮n

KL(K|K0)

with
KL(K|K0) =

∑

i,j

Ki,j log(
Ki,j

K0
i,j

),

where K0
i,j = exp(Ci,j).

We let C̃i,j = Cij + fi + gj . We have for K ∈ U := {K|K⊮n = K⊤⊮n = ⊮n} that KL(K|eC̃) =∑
i,j Ki,j log(

Ki,j

eCi,j+fi+gj
). This gives

KL(K|eC̃) =
∑

i,j

Ki,j [log(
Ki,j

eCi,j
)− fi − gj ] =

∑

i,j

Ki,j [log(
Ki,j

eCi,j
)]−

∑

i

fi −
∑

j

gj

so that
KL(K|eC̃) = KL(K|eC)−

∑

i

fi −
∑

j

gj .
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This shows that KL(K|eC̃) and KL(K|eC) have the same argmin on U which implies that
Sinkhorn(C) = Sinkhorn(C̃).

5.A.2 PDEs associated with k0,k1,k∞ - Proof of Proposition 5.3

Proof. Recall that for p ∈ {0, 1,∞}, we have T p
µ(x) =

∫
kp(x, x′)WV x

′dµ(x′).

For h ∈ C(Rd × Rd) consider

H(µ) =
∫
h(x, y)dµ(x)dµ(y).

Then we have (Santambrogio, 2017)

δH
δµ

(µ) =

∫
(h(x, .) + h(., x))dµ(x).

We can now derive the different gradient expressions for T 0
µ , T 1

µ and T∞
µ .

For T 0
µ : under Assumption 5.2, we have that f(x, x′) = eC(x,x′) is symmetric. This gives

δF
δµ

(µ) =

∫
f(., x′)dµ(x′)

and by differentiation under the integral, under sufficient regularity assumptions on µ, this gives

∇W (F0)(x) =

∫
∇xf(x, x

′)dµ(x′) =

∫
f(x, x′)∇xc(x, x

′)dµ(x′).

Since ∇xc(x, x
′) = −WV x

′, we get

∇W (F0)(x) = −
∫
ec(x,x

′)WV x
′dµ(x′).

For µ = 1
n

∑n
i=1 δxi this is exactly

∇W (F0)(x) = −
n∑

j=1

K0
i,jWV xj .

For T 1
µ : we have

∇[log(
∫
ec(.,x

′)dµ(x′))](x) =

∫ ∇xc(x, x
′)ec(x,x

′)

∫
ec(x,y)dµ(y)

dµ(x′) = −
∫

ec(x,x
′)WV x

′
∫
ec(x,y)dµ(y)

dµ(x′).

For T 2
µ : one has the dual formulation for F∞ (Peyré et al., 2019):

2F∞(µ) = −max
f

∫

Rd

(f + f c)dµ (5.10)

where we denote the soft c transform as

f c(x′) := − log

(∫
ef(x)+c(x,x′)dµ(x)

)
, (5.11)
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which actually depends on µ and c. One has for an optimal pair f = f c (Peyré et al., 2019). In
addition, one has k∞(x, x′) = ec(x,x

′)+f(x)+f(x′). The Wasserstein gradient of F∞ is then

∇WF∞(µ) = −∇f

where f is an optimal solution of (5.10) (which is unique up to a constant). The gradient of f
can be obtained using (5.11) and the fact that f = f c:

∇f(x) = −
∫
ef(x)+f(x′)+c(x,x′)∇xc(x, x

′)dµ(x′) = −
∫
k∞(x, x′)∇xc(x, x

′)dµ(x′).

This finally gives

∇WF∞(µ) : x 7→ −
∫
k∞(x, x′)Wvx

′dµ(x′), (5.12)

that is what we wanted to show.

5.A.3 The SoftMax normalization does not correspond to a gradient flow - Proof
of Proposition 5.4

Proof. Suppose by contradiction that T 1
µ = −∇[log(

∫
k0(·, x′)dµ(x′))] is a Wasserstein gradient.

This implies that there exists a function F such that, ∀µ ∈M(Rd) and ∀x ∈ Rd,

δF

δµ
(µ)(x) = log(

∫
k0(·, x′)dµ(x′)).

We therefore have
δ2F

δµ2
(µ)(x, x′) =

k0(x, x′)∫
k0(x, y)dµ(y)

,

∀x, x′ ∈ Rd. However, δ2F
δµ2 (µ) is symmetric for all µ ∈M(Rd). The relationship δ2F

δµ2 (µ)(x, x
′) =

δ2F
δµ2 (µ)(x

′, x) then implies that for all µ, x and x′ such that k0(x, x′) ̸= 0 we have

∫
k0(x, y)dµ(y) =

∫
k0(x′, y)dµ(y).

Taking µ = δy gives k0(x, y) = k0(x′, y), which by symmetry implies that k0 is a constant.

This is a contradiction since k0(x, x′) = exp(x⊤W⊤
QWKx

′).

5.A.4 Sinkformer’s PDE - Proof of Theorem 5.5

Proof. Since W⊤
QWK is positive-definite we write it W⊤

QWK = A2 where A is positive-definite.

Note that thanks to Proposition 5.1, if κε(x, x′) = exp(−∥x−x′∥2
2ε ), one has under Assumption 5.2

that κ∞ε (Ax,Ax′) = k∞ε (x, x′). For x ∈ Rd, we have

T
∞
µ,ε(A

−1x) =
1

ε
(

∫
κ∞ε (x,Ax′)WV x

′ρ(x′)dx′ −WVA
−1x).

We perform the change of variable y = Ax′. This gives

T
∞
µ,ε(A

−1x) =
1

ε
(

∫
κ∞ε (x, y)WVA

−1yρ(A−1y)CAdy −WVA
−1x),
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where CA depends only on A. We then apply Theorem 1 from Marshall and Coifman (2019)
with f =WVA

−1, q(x) = ρ(A−1x) and w = 1
CA

, to obtain that

T
∞
µ,ε(A

−1·)→ 2∇f∇(q1/2)
q1/2

=WVA
−1∇q

q

in L2 norm. Since q(x) = ρ(A−1x) we have obtained that ∇q
q = A−1∇ρ

ρ (A−1·) so that

T
∞
µ,ε(A

−1x)→WVA
−2∇ρ

ρ
(A−1x) =WV (W

⊤
QWK)−1∇ρ

ρ
(A−1x).

In other words,

T
∞
µ,ε →WV (W

⊤
QWK)−1∇ρ

ρ
,

which is exactly what we wanted to show. Note that when WV = −W⊤
QWK this gives the

expected result. The general form for the PDE is then

∂tρ = div(−WV (W
⊤
QWK)−1∇ρ

ρ
× ρ)

which gives
∂tρ = ∆ρ

if WV = −W⊤
QWK .

5.A.5 Transformer’s PDE - Proof of Proposition 5.6

Proof. Let x ∈ Rd and consider

gε(x) = εT 1
µ,ε(W

−1
Q x) =

∫
e−

∥x−WKx′∥2
2ε WV x

′ρ(x′)dx′

∫
e−

∥x−WKx′∥2
2ε ρ(x′)dx′

.

We perform the change of variable y =WKx
′. This gives:

gε(x) =

∫
e−

∥x−y∥2
2ε WVW

−1
K yρ(W−1

K y)dy
∫
e−

∥x−y′∥2
2ε ρ(W−1

K y)dy
.

Using the Laplace expansion result from Singer (2006), we obtain that

gε(x) =WVW
−1
K

xρ(W−1
K x) + ε

2∆(xρ(W−1
K x)) + o(ε)

ρ(W−1
K x) + ε

2∆(ρ(W−1
K x)) + o(ε).

By doing a Taylor expansion for the denominator, we find

gε(x) =WVW
−1
K (x+

ε

2

∆(xρ(W−1
K x)

ρ(W−1
K x)

+ o(ε))(1− ε

2

∆(ρ(W−1
K x))

ρ(W−1
K x)

+ o(ε))

and

gε(x) =WVW
−1
K (x+ ε

∇(ρ(W−1
K x))

ρ(W−1
K x)

+ o(ε).)

Since T 1
µ,ε = T 1

µ,ε+
1
εW

⊤
QWQ = 1

ε (gε(WQx)+W
⊤
QWQx) and becauseWVW

−1
K = −WQ

⊤WKW
−1
K =

−W⊤
Q we have

T
1
µ,ε = −W⊤

QW
−1
K

∇ρ(W−1
K WQx))

ρ(W−1
K WQx)

+ o(1)

which is exactly the expected result.
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5.B Implementation details

We implement Sinkhorn’s algorithm in log domain for stability. Given a matrix K0 ∈ Rn×n such
that K0

i,j = eCi,j for some C ∈ Rn×n, Sinkhorn’s algorithm (5.3) approaches (f, g) ∈ Rn × Rn

such that K∞ = diag(ef
∞
)K0diag(eg

∞
) by iterating in log domain, starting from g0 = ⊬n,

f l+1 = log(⊮n/n)− log(Keg
l
) if l is even

gl+1 = log(⊮n/n)− log(K⊤ef
l
) if l is odd.

(5.13)

This allows for fast and accurate computations, where log(Keg
l
) and log(K⊤ef

l
) are computed

using log-sum-exp.

5.C Experimental details

5.C.1 ModelNet 40 classification

Set Transformers. For our experiments on ModelNet using Set Transformers, we first pre-
possess the ModelNet 40 dataset. We then uniformly sample 5000 points from each element
in the dataset. Our architecture is composed of two ISAB layers in the encoder and a decoder
composed of a SAB and a Pooling by Multihead Attention (PMA) module. For the training, we
use a batch-size of 64 and we use Adam (Kingma and Ba, 2014). The training is done over 300
epochs. The initial learning rate is 10−3 and is decayed by a factor 10 after 200 epochs.

Point Cloud Transformers. For our experiments on ModelNet using Point Clouds Trans-
formers, we uniformly sample 1024 points from each element in the dataset. For the training, we
use a batch-size of 32 and we use SGD (Ruder, 2016). The training is done over 300 epochs. The
initial learning rate is 10−4 and is decayed by a factor 10 after 250 epochs.

5.C.2 Sentiment Analysis

We use the code available at the repository nlp-turorial1, where a pretrained Transformer is
fine-tuned on the IMDb dataset. In our experiment, we reset the parameters of the pretrained
Transformer and train it from scratch on the IMDb dataset. We use an architecture of depth
6, with 8 heads. For the training, we use a batch-size of 32 and we use Adam. The training is
done over 15 epochs. The initial learning rate is 10−4 and is decayed by a factor 10 after 12
epochs.

5.C.3 Neural Machine Translation

We use the Transformer from fairseq and the command for training it on the IWSLT’142

dataset. When fine-tuning a Sinkformer, we simply divide the original learning rate by 10.

5.C.4 Vision Transformers

Cats and dogs classification. This experiment is done on the cats and dogs3 dataset. For
this experiment, we use a batch-size of 64 and Adam. We use an architecture of depth 6, with 8
heads, and select a patch-size of 16. The training is done over 300 epochs. The initial learning
rate is 5× 10−5 and divided by 10 after 250 epochs.

1https://github.com/lyeoni/nlp-tutorial/tree/master/text-classification-transformer
2https://github.com/pytorch/fairseq/blob/main/examples/translation/README.md
3https://www.kaggle.com/c/dogs-vs-cats/data
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Impact of the patch size on the final accuracy. For this experiment, we use a batch-size
of 100 and Adam. We use an architecture of depth 1, with 1 heads, without non-linearity, and
select different values for the patch-size. The training is done over 45 epochs. The initial learning
rate is 1× 10−3 (resp. 2× 10−3) for the Transformer (resp. Sinkformer) and divided by 10 after
35 epochs and again by 10 after 41 epochs.
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Part III

Transformers in Action
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6
How do Transformers Perform In-Context
Autoregressive Learning?

Transformers have achieved state-of-the-art performance in language modeling tasks. However,
the reasons behind their tremendous success are still unclear. In this chapter, towards a better
understanding, we train a Transformer model on a simple next token prediction task, where
sequences are generated as a first-order autoregressive process st+1 = Wst. We show how a
trained Transformer predicts the next token by first learning W in-context, and then applying a
prediction mapping. We call the resulting procedure in-context autoregressive learning. More
precisely, focusing on commuting orthogonal matrices W , we first show that a trained one-layer
linear Transformer implements one step of gradient descent for the minimization of an inner
objective function when considering augmented tokens. When the tokens are not augmented, we
characterize the global minima of a one-layer diagonal linear multi-head Transformer. Importantly,
we exhibit orthogonality between heads and show that positional encoding captures trigonometric
relations in the data. On the experimental side, we consider the general case of non-commuting
orthogonal matrices and generalize our theoretical findings.
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6.1 Introduction

Transformers (Vaswani et al., 2017) have achieved state-of-the-art performance in natural language
processing tasks (Devlin et al., 2018). They now serve as the backbone for large language models,
such as GPT (Radford et al., 2018; Brown et al., 2020), Chinchilla (Hoffmann et al., 2022),
PaLM (Chowdhery et al., 2023), LLama (Touvron et al., 2023) or Mistral (Jiang et al., 2023).
These models, which are causal, are trained to predict the next token sT+1 given a sequence (also
termed as context) s1:T := (s1, · · · , sT ). An intriguing property of large Transformers is their
ability to adapt their computations given the context s1:T . In this work, we make a step towards
understanding this in-context learning ability. More precisely, assuming the tokens satisfy a
relation sT+1 = φW (s1:T ), with W a context-dependent parameter varying with each sequence,
we say that a trained Transformer autoregressively learns this relation in-context if it decomposes
its prediction into 2 steps: first, estimating W through an in-context mapping, and then applying
a simple prediction mapping, which is equal or closely related to φW (see Definition 6.1).

The goal of this chapter is to fully characterize the autoregressive in-context learning process
for optimally-trained Transformers. More precisely, building on the work of Von Oswald et al.
(2023b), we focus on a simple autoregressive (AR) process of order 1, where each sequence is
generated following the recursion sT+1 = φW (s1:T ) := WsT , and W is a randomly sampled
orthogonal matrix, referred to as the context matrix. Such a process is illustrated in dimension 3
in Figure 6.1 for two different matrices W . We investigate the training of a linear Transformer
to predict the next token in these AR processes, examining how it estimates W in-context and
makes predictions for sT+1. Depending on the input tokens encoding, the in-context mapping
can correspond to gradient descent on an inner objective, as suggested by Von Oswald et al.
(2023b). Alternatively, the context matrix W might be determined in closed form if the model
possesses sufficient expressiveness. This chapter investigates both scenarios.

More precisely, we make the following contributions:

• We begin by reviewing the background and previous works in §6.2. Then, in §6.3, we introduce
our autoregressive process, which allows us to mathematically formalize the notion of in-context
autoregressive learning.

• In §6.4, we demonstrate that if the matrices W commute and the model parameters possess a
block structure, then a linear Transformer—trained on augmented tokens as introduced by
Von Oswald et al. (2023b)—effectively implements a step of gradient descent on an underlying
objective function as in-context mapping.

• In §6.5, we turn our attention to a one-layer linear attention Transformer that incorporates
positional encoding but does not use augmented tokens. We comprehensively characterize the
minimizers of the training loss. Notably, these minimizers display an orthogonality property
across different heads. This aspect underscores the significance of positional encoding in enabling
the Transformer to learn geometric operations between tokens through its in-context mapping.
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Figure 6.1: Illustration of the autoregressive process in R3. Dots and crosses correspond
to two different orthogonal matrices W .

We also study positional-encoding-only attention and show that approximate minimum ℓ2
norm solutions are favored by the optimization process.

• On the experimental side, in §6.6, we extend our analysis to the more general case where the
context matrices W do not commute. We validate our theoretical findings for both augmented
and non-augmented scenarios. Furthermore, we explore how variations in the distribution of
the context matrices W affect trained positional encodings and lead to structures resembling
those of traditional positional encodings commonly used in Transformers.

Each theoretical result of the chapter aims at characterizing the autoregressive in-context learning
mechanism for simple models and sequence data. Namely, Propositions 6.5, 6.7 and 6.11 give
the structure of the minimizers of the training loss and explicit the corresponding in-context
mappings, while Propositions 6.8, 6.9 and 6.12 focus on the optimization process.

Notations. We use lower cases for vectors and upper cases for matrices. ∥.∥ is the ℓ2 norm. We
denote the transpose and adjoint operators by ⊤ and ⋆. O(d) (resp U(d)) is the orthogonal (resp
unitary) manifold, that is O(d) = {W ∈ Rd×d|W⊤W = Id} and U(d) = {W ∈ Cd×d|W ⋆W = Id}.
The element-wise multiplication is ⊙. ⟨|⟩ is the canonical dot product in Rd, and ⟨·|·⟩C the
canonical hermitian product in Cd. For λ ∈ Cd, λk is the element-wise power k of λ: (λk)i =
λki .

6.2 Background and previous works

Causal Language Modelling. Language (or sequence) modeling refers to the development
of models to predict the likelihood of observing a sequence (x1, . . . , xT ), where each xt is
called a token, and comes from a finite vocabulary. This can be done by using the chain
rule of probability P (X1 = x1, X2 = x2, . . . , XT = xT ) = P (X1 = x1) × P (X2 = x2|X1 =
x1) × . . . × P (XT = xT |X1 = x1, . . . , XT−1 = xT−1) (Jurafsky and Martin, 2009). Predicting
these conditional probabilities can be done using a parametrized model Fθ to minimize the
loss L(Fθ(x1, ..., xT−1), xT ) across all training samples and sequence length T . In common
applications, L is chosen as the cross-entropy loss. In other words, the model is trained to
predict the next token sequentially. Such a model is called a causal language model: it cannot
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access future tokens. Recently, the Transformer has emerged as the model of choice for language
modeling.

Transformers. Transformers (Vaswani et al., 2017) process sequences of tokens (x1, . . . , xT )
of arbitrary length T . In its causal form (Brown et al., 2020; Touvron et al., 2023; Jiang et al.,
2023), a Transformer first embeds the tokens to obtain a sequence (e1, . . . , eT ). It is then
composed of a succession of blocks with residual connections (He et al., 2016a). Each block is
made of the composition of a multi-head self-attention module and a multi-layer perceptron
(MLP). Importantly, the latter acts on each token separately, whereas multi-head self-attention
mixes tokens, and corresponds to applying vanilla self-attention in parallel (Michel et al., 2019).
More precisely, each multi-head self-attention is parametrized by a collection of weight matrices
(W h

Q,W
h
K ,W

h
V ,W

h
O)1≤h≤H and returns:

(

H∑

h=1

W h
O

t∑

t′=1

Ah
t,t′W

h
V et′)t∈{1,··· ,T}, (6.1)

where Ah is the attention matrix (Bahdanau et al., 2014b) and is usually defined as

Ah
t,: = softmax(⟨W h

Qet,W
h
Ke:⟩),

with ⟨·, ·⟩ a dot product. The sum over t′ in (6.1) stopping at t reflects the causal aspect of the
model: the future cannot influence the past. The output at position T is commonly used to
predict the next token eT+1. In practice, to help the model encode the relative position of the
tokens in the sequence, a positional encoding (PE) is used.

Positional encoding. As described in Kazemnejad et al. (2023), encoding the position in
Transformers amounts to defining the dot product ⟨·, ·⟩ in the attention matrix, using additional
(learnable or not) parameters. Popular designs include Absolute PE (Vaswani et al., 2017),
Relative PE (Raffel et al., 2020), AliBI (Press et al., 2021), Rotary (Su et al., 2024), and NoPE
(Kazemnejad et al., 2023). In this chapter, we consider a learnable positional encoding.

Linear attention. In its simplest form, linear attention (Katharopoulos et al., 2020) consists
in replacing the softmax in (6.1) by the identity. More formally, it consists in considering that
each coefficient in the attention matrix is Ah

t,t′ = ⟨W h
Ket′ ,W

h
Qet⟩. The main practical motivation

of linear attention is that it enables faster inference (Katharopoulos et al., 2020; Fournier et al.,
2023). Note that even though they are called linear Transformers, the resulting models are non-
linear with respect to the input sequence and jointly non-linear with respect to the parameters.
From a theoretical perspective, linear attention has become the model of choice to understand
the in-context-learning properties of Transformers (Mahankali et al., 2023; Ahn et al., 2023;
Zhang et al., 2023).

In-context-Learning in Transformers The seminal work of Brown et al. (2020) reported an
in-context-learning phenomenon in Transformer language models: these models can solve few-shot
learning problems given examples in-context. Namely, given a sequence (x1, f(x1), x2, f(x2), · · · , xn),
a trained Transformer can infer the next output f(xn) without additional parameter updates.
This surprising ability has been the focus of recent research. Some works consider the softmax
attention without considering training dynamics (Garg et al., 2022; Akyürek et al., 2022; Li
et al., 2023). Other works focus solely on linear attention and characterize the minimizers of
the training loss when f is sampled across linear forms on Rd, that is f(x) = w⊤x for some
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w (Mahankali et al., 2023; Ahn et al., 2023; Zhang et al., 2023). In particular, these works
discuss the ability of Transformers to implement optimization algorithms in their forward pass at
inference, as empirically suggested by Von Oswald et al. (2023a). Nevertheless, the formulations
used by Von Oswald et al. (2023a); Mahankali et al. (2023); Ahn et al. (2023); Zhang et al.
(2023) are all based on concatenating the tokens so that the Transformer’s input takes the form( x1 x2 ··· xn

f(x1) f(x2) ··· 0

)
∈ R(d+1)×n. However, the necessity for this concatenation limits the impact of

these results as there is no guarantee that the Transformer would implement this operation in its
first layer. In addition, these works explicitly consider the minimization of an in-context loss,
which is different from the next-token prediction loss in causal Transformers. In contrast, our
work considers the next-token prediction loss and considers a more general notion of in-context
learning, namely in-context autoregressive learning, that we describe in the next section.

6.3 Linear Attention for AR Processes

Token encoding. Building on the framework established by Von Oswald et al. (2023b), we
consider a noiseless setting where each sequence begins with an initial token s1 = 1d. This
token acts as a start-of-sentence marker. The subsequent states are generated according to
st+1 = Wst, where W is a matrix referred to as the context matrix. This matrix is sampled
uniformly from a subset CO (respectively, CU ) of O(d) (respectively, U(d)), and we denote W as
the corresponding distribution: W ∼ W := U(C). Considering norm-preserving matrices ensures
the stability of the AR process, which is crucial to be able to learn from long sequences (i.e. using
large T ). In this chapter, we contrast CO and CU to showcase how the distribution of in-context
parameters W impacts the in-context mapping learned by Transformers. In addition, we have
the following.

Remark 1. If WU ∈ U(d), then

WO :=

[
Real(WU ) −Imag(WU )
Imag(WU ) Real(WU )

]

is in O(2d) and has pairwise conjugate eigenvalues. WO is a rotation (because WO is similar
to a 2 × 2 block diagonal matrix with rotations). Reciprocally, for any rotation WO of size 2d
corresponds a unitary matrix WU of size d by selecting half of the eigenvalues (for instance those
with positive imaginary parts).

Therefore, U(d) can be viewed as a subset of O(2d), while O(d) ⊂ U(d). As such, placing
ourselves in U(d) corresponds to a compact way of considering real AR processes in dimension
2d.

In our analysis, we consider two settings in which the sequence s1:T is mapped to a new sequence
e1:T . In the augmented setting (§6.4), the tokens are defined as et := (0, st, st−1), aligning with
the setup used by Von Oswald et al. (2023b). In contrast, the non-augmented setting (§6.5)
utilizes a simpler definition where the tokens are simply et := st.

Model and training process. We consider a Transformer with linear attention, which includes
an optionally trainable positional encoding P ∈ RTmax×Tmax for some Tmax ∈ N:

Ah
t,t′ = Pt,t′⟨W h

Qet|W h
Ket′⟩. (6.2)

Throughout this chapter, we will re-parameterize the model by setting Bh = W h
OW

h
V and

Ah =W h⊤
K W h

Q. Note that such an assumption is standard in theoretical studies on the training
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of Transformers (Mahankali et al., 2023; Zhang et al., 2023; Ahn et al., 2023). The trainable
parameters are therefore θ = ((Ah, Bh, P ))1≤h≤H when the positional encoding is trainable and
θ = ((Ah, Bh))1≤h≤H otherwise. This defines a mapping Tθ(e1:T ) by selecting a section from
some element τ in the output sequence (6.1). We focus on the population loss, defined as:

ℓ(θ) :=

Tmax∑

T=2

EW∼W∥Tθ(e1:T )− sT+1∥2, (6.3)

indicating the model’s objective to predict sT+1 given e1:T . It is important to note that both
sT+1 and e1:T appearing in (6.3) are computed from a random W and are therefore random
variables.

In-context autoregressive learning. Our goal is to theoretically characterize the parameters
θ∗ that minimize ℓ, discuss the convergence of gradient descent to these minima, and characterize
the in-context autoregressive learning of the model. This learning process is defined as the
model’s ability to learn and adapt within the given context: first by estimating W (or more
generally some power of W ) using an in-context mapping Γ, then by predicting the next token
using a simple mapping ψ. In the context or AR processes, we formalize this procedure in the
following definition.

Definition 6.1 (In-context autoregressive learning). We say that Tθ∗ learns autoregressively in-
context the AR process sT+1 =WsT if Tθ∗(e1:T ) can be decomposed in two steps: (1) first applying
an in-context mapping γ = Γθ∗(e1:T ), (2) then using a prediction mapping Tθ∗(e1:T ) = ψγ(e1:T ).
This prediction mapping should be of the form ψγ(e1:T ) = γsτ for some shift τ ∈ {1, · · · , T}.
With such a factorization, in-context learning arises when the training loss ℓ(θ∗) is small. This
corresponds to having Γθ∗(e1:T ) ≈ W T+1−τ when applied to data e1:T exactly generated by the
AR process with matrix W .

In this work, we will have either τ = T or τ = T − 1.

Remark 2. We use the word in-context to make explicit the fact that the matrix W is different
for each sequence. As a consequence, attention-based models are particularly well suited to
such a task because predicting W involves considering relationships between tokens. In contrast,
RNNs perform poorly in this setting precisely because they do not consider interactions between
tokens. In fact, in its simplest form, a linear RNN with parameters A and B outputs, for each t:
yt =

∑t
k=1A

t−kBW k−1e1. It is easy to see that A and B would have to depend on W for yt to
be close to W ts1, which is impossible because W is different for each sequence.

To fully characterize the in-context mapping Γ and prediction mapping ψ, we rely on a commu-
tativity assumption.

Assumption 6.2 (Commutativity). The matrices W in C commute. Hence, they are co-
diagonalizable in a unitary basis of Cd×d. Up to a change of basis, we therefore suppose CU =
{diag(λ1, · · · , λd), |λi| = 1} and CO = {(λ1, λ̄1, · · · , λδ, λ̄δ), |λi| = 1}, with d = 2δ.

For conciseness, we only consider pairwise conjugate eigenvalues in CO. While assumption 6.2 is
a strong one, it is a standard practice in the study of matrix-involved learning problems (Arora
et al., 2019). We highlight that, to the best of our knowledge, this is the first work that provides a
theoretical characterization of the minima of ℓ. The general problem involving non-commutative
matrices is complex, and we leave it for future work. Note that recent studies, such as those
by Mahankali et al. (2023); Zhang et al. (2023); Ahn et al. (2023) focus on linear regression
problems x 7→ w⊤x, which rewrites x 7→ 1⊤d diag(w)x. Therefore, considering diagonal matrices
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is a natural extension of these approaches to autoregressive settings. Note also that imposing
commutativity, while a simplification, represents a practical method of narrowing down the class
of models φW . Indeed, in high dimension, it becomes necessary to restrict the set C, otherwise,
W cannot be accurately estimated when T < d. Note that however, in §6.6, we experimentally
consider the general case of non-commuting matrices.

6.4 In-context mapping with gradient descent

In this section, we consider the augmented tokens et := (0, st, st−1). We show that under assump-
tion 6.2 and an additional assumption on the structure of θ at initialization, the minimization
of (6.3) leads to the linear Transformer implementing one-step of gradient descent on an inner
objective as its in-context mapping Γθ∗ . The motivation behind this augmented dataset is that
the tokens et can be computed after a two-head self-attention layer with a softmax. Indeed, we
have the following result.

Lemma 6.3. The tokens e1:T can be approximated with arbitrary precision given tokens s1:T
with a Transformer (6.1).

For a proof, see Appendix 6.A.1. We suppose that W = U(CU ), that is we consider unitary
matrices. We consider Tθ to be a one-head attention layer with skip connection and output the
fist d coordinates of the token T . More precisely, one has

Tθ(e1:T ) =
(
eT +

T∑

t=1

⟨AeT |et⟩CBet
)

1:d

. (6.4)

Importantly, we do not consider a positional encoding as the relative position is already stored
in each token et. Note that we use the hermitian product ⟨|⟩C as et ∈ C3d.

We have the following result showing the existence of θ0 such that (6.4) corresponds to one step
of gradient descent on an inner objective.

Proposition 6.4 (Von Oswald et al. (2023b)). There exists θ0 such that Γθ0(e1:T ) = W0 −
η∇L(W0, e1:T ) with

L(W, e1:T ) =
1

2

T−1∑

t=1

∥st+1 −Wst∥2, (6.5)

and W0 is any gradient descent initialization.

We now make the following assumption on the structure of A and B.

Assumption 1. We parameterize A and B as

A =




0 0 0
0 A1 A2

0 A3 A4


 and B =




0 B1 B2

0 0 0
0 0 0


 ,

with Ai = aiI and Bi = biI.

Importantly, while the zero block structure is stable with gradient descent on loss (6.3), we do
impose the non-zero blocks to stay diagonal during training. Note that considering diagonal
matrices is a widely used assumption in the topic of linear diagonal networks (Woodworth et al.,
2020; Pesme et al., 2021). Note also that we consider the general parametrization for A and B in
our experiments in §6.6.
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Under assumption 1, we have the following result, stating that at optimality, Γθ∗ corresponds to
Γθ0 in Proposition 6.5 with W0 = 0.

Proposition 6.5 (In-context autoregressive learning with gradient-descent). Suppose C = CU ,
assumptions 6.2 and 1. Then loss (6.3) is minimal for θ∗ such that a∗1 + a∗4 = a∗2 = b∗2 = 0

and a∗3b
∗
1 =

∑Tmax
T=2 T∑Tmax

T=2 (T 2+(d−1)T )
. Furthermore, an optimal in-context mapping Γθ∗ is one step of

gradient descent starting from the initialization λ = 0, with a step size asymptotically equivalent
to 3

2Tmax
with respect to Tmax.

For a full proof, see Appendix 6.A.3. Proposition 6.5 demonstrates that a single step of gradient
descent constitutes the optimal forward rule for the Transformer Tθ. This finding aligns with
recent research showing that one step of gradient descent is the optimal in-context learner for
one layer of self-attention in the context of linear regression (Mahankali et al., 2023; Zhang et al.,
2023; Ahn et al., 2023). However, a substantial drawback of considering augmented tokens is that
it requires previous layers to form these tokens which—although is possible according to Lemma
6.3—is a strong assumption. Therefore, in the next section, we consider the non-augmented
setting where we do not make strong assumptions about previous layers.

6.5 In-context mapping as a geometric relation

In this section, we consider the non-augmented tokens where et := st, and a multi-head self-
attention model Tθ:

Tθ(e1:T ) =
H∑

h=1

T∑

t=1

PT−1,t⟨et|AheT−1⟩CBhet, (6.6)

that is we consider τ = T − 1, the second to last token in the output, and no residual connections.
While not considering the last token in the output is not done in practice, this small modification
is necessary to achieve zero population loss. We stress out that we still mask the token we want
to predict.

We consider a self-attention module with H heads, and we define the following assumption.

Assumption 2. Ah and Bh are diagonal for all h: Ah = diag(ah) and Bh = diag(bh) with
(ah, bh) ∈ Rd × Rd.

Importantly, we impose the diagonal structure during training. This diagonal aspect reflects the
diagonal property of the context matrices. Under assumptions 6.2 and 2, we have the following
result.

Lemma 6.6. Suppose assumptions 6.2 and 2. Writing ah = (a1h, · · · , adh) and bh = (b1h, · · · , bdh)
and letting A := (a1, · · · , ad) ∈ RH×d, and B := (b1, · · · , bd), one has for an input sequence
e1:T = (1d, λ, · · · , λT−1) ∈ RT×d :

Tθ(e1:T ) =
T∑

t=1

PT−1,t[B
⊤A]λt−T+1 ⊙ λt−1.

For a full proof, refer to appendix 6.A.4. Note that A and B correspond to the concatenation of
diagonals W h⊤

K W h
Q and W h

OW
h
V along heads.

It is easily seen from Lemma 6.6 that the choice of P ∗
T−1,t = δt=T and B∗⊤A∗ = Id implies

Tθ∗(e1:T ) = λT , and therefore ℓ(θ∗) = 0. We see that this requires at least d heads. A natural
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question is whether there are other optimal solutions and how to characterize them. To answer
this question, we investigate the case of unitary context matrices before moving to orthogonal
ones. We consider these cases separately because they both lead to different in-context mappings.
We recall that U(d) can be seen as a subset of O(2d) (see Remark 1).

6.5.1 Unitary context matrices.

In this case, coefficients in the context matrices are drawn independently. This constrains the
possible values for θ∗ achieving zero loss. Indeed, we have the following result.

Proposition 6.7 (Unitary optimal in-context mapping). Suppose assumptions 6.2 and 2. Any
θ∗ = (A∗, B∗, P ∗) achieving zero of the loss (6.3) satisfies P ∗

T−1,t = 0 if t ̸= T , P ∗
T−1,T (B

∗⊤A∗)ii = 1,
and (B∗⊤A∗)ij = 0 for i ≠ j. Therefore, one must have H ≥ d. An optimal in-context mapping
satisfies Γθ∗(e1:T ) = ēT−1 ⊙ eT and the predictive mapping ψγ(e1:T ) = γ ⊙ eT .

Proof sketch. At ℓ(θ∗) = 0 one has Tθ∗(e1:T ) = λT . We notice that Tθ∗(e1:T ) is a polynomial in
the λi’s. Identifying the coefficients leads to the desired results.

For a full proof, refer to appendix 6.A.5. In particular, for e1:T = (1d, λ, · · · , λT−1), we have
Γθ∗(e1:T ) = λ, and ψΓθ∗ (e1:T ) = λ⊙ λT−1 = λT .

Orthogonality. The equality (B⊤A)ij = 0 for i ̸= j corresponds to an orthogonality property
between heads. Indeed, to further understand what Proposition 6.7 implies in terms of learned
model, let’s look at the particular case in which H = d and, at optimality, A∗ = B∗ = Id
and P ∗

T−1,t = δt=T . Therefore, the positional encoding selects the last token in the input
sequence, hence learning the structure of the training data. In parallel, each attention matrix
captures a coefficient in λ: (Tθ∗(e1:T ))h = λhλ

T−1
h . When there are more than d heads, some

heads are useless, and can therefore be pruned. Such a finding can be related to the work of
Michel et al. (2019), where the authors experimentally show that some heads can be pruned
without significantly affecting the performance of Transformers. Orthogonality in the context of
Transformers was also investigated by directly imposing orthogonality between the outputs of
each attention head (Lee et al., 2019b) or on attention maps (Chen et al., 2022; Zhang et al.,
2021). The ability of the positional encoding to recover the spatial structure was already shown
by Jelassi et al. (2022), which studies Vision Transformers (Dosovitskiy et al., 2020).

Convergence of gradient descent. Now that we have characterized all the global minima of
the loss (6.3), we can study the convergence of the optimization process. We have the following
Proposition, which shows that the population loss (6.3) writes as a quadratic form in B⊤A and P ,
which enables connections with matrix factorization.

Proposition 6.8 (Quadratic loss). Under assumptions 6.2 and 2, loss (6.3) reads

ℓ(A, B, P ) =

Tmax∑

T=2

l(B⊤A, PT−1)

with l(C, p) = ∥p∥22∥C∥2F + p2T−1S(C
⊤C) − 2Tr(C)pT + d, where S is the sum of all coefficients

operator.

A proof is in Appendix 6.A.6. For an optimal P ∗ with P ∗
T−1,t = δt=T , ℓ(A, B, P ∗) = (Tmax −

1)∥B⊤A− I∥2F , for which we can use Theorem 2.2 of Nguegnang et al. (2021) to argue that for
almost all initial values, gradient flow on ℓ will converge to a global minimum, that is B⊤A = Id.
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When training is also done on pT := PT−1,T , the loss is then ℓ(A, B, P ) =
∑Tmax

T=2 ∥pTB⊤A− I∥2F .
Note that even for Tmax = 2, convergence of gradient descent in (A, B, p2) on ℓ to a global
minimum is an open problem, for which a conjecture (Nguegnang et al., 2021; Achour et al.,
2021) states that for almost all initialization, (A, B, p2) will converge to a global minimum of ℓ.
We provide evidence for global convergence in Figure 6.3. Yet, we have the following result in
the scalar case H = d = 1. Its proof is in Appendix 6.A.7.

Proposition 6.9. Consider the loss ℓ(a, b, p) = (pab − 1)2. Suppose that at initialization,
|pab−1| < 1. Then gradient flow on (a, b, p) converges to a global minimum satisfying a∗b∗p∗ = 1.

Role of the softmax. Our results rely heavily on the use of linear attention. In fact, we could
not find a natural way to express the global minimum of the training loss (6.3) when a softmax
layer was involved, even in dimension d = 1. To gain more insight, we conducted an experiment
where we trained different models with and without softmax and MLP layers. The results are
shown in Figure 6.9 in Appendix 6.B, where it is clear that in the case of commuting context
matrices, using a softmax is incompatible with learning the underlying in-context mapping.

6.5.2 Orthogonal context matrices.

We now turn to the case where the context matrices are in CO. We recall that this imposes that
the λi are pairwise conjugate. Therefore, the dimension d is even, and we write it d = 2δ. The
context matrices are therefore rotations. This property changes the optimization landscape and
other solutions are possible, as shown in the following Lemma.

Lemma 6.10. Suppose assumptions 6.2, 2. If P ∗
T−1,T−1 = −1, P ∗

T−1,T = 2 and 0 otherwise, and
B∗⊤A∗ = 1

2 diag(J, · · · , J), with J ∈ R2×2 and Jij = 1 for all i, j, then Tθ∗(e1:T ) = λT .

For a full proof, refer to Appendix 6.A.5. In this case, H = δ heads are sufficient to reach zero
population loss. The optimal parameters can be exactly characterized.

Proposition 6.11 (Orthogonal optimal in-context mapping). Suppose assumptions 6.2 and
2. Any θ∗ = (A∗, B∗, P ∗) with ℓ(θ∗) = 0 in (6.3) satisfies, denoting C∗ = B∗⊤A∗ and p∗ = P ∗

T−1:
p∗t = 0 if t < T − 1, p∗TC

∗
i,i = 1, p∗TC

∗
2i−1,2i + (C∗2i−1,2i−1 + C∗2i−1,2i)p

∗
T−1 = 0, p∗TC

∗
2i,2i−1 +

(C∗2i,2i + C∗2i,2i−1)p
∗
T−1 = 0, C∗2i−1,j = C∗2i,j = 0 for j ̸= 2i − 1, 2i. An optimal in-context

mapping is then, for et = λt−1: Γθ∗(e1:T ) = λ2, and the corresponding predictive mapping
ψΓθ∗ (e1:T )(e1:T ) = λ2 ⊙ eT−1 = λT .

Proof sketch. Similarly to Proposition 6.7, we identify the coefficients of a polynomial, with
careful inspection of terms involving pairwise conjugate contexts (λi, λ̄i).

Similarly to Proposition 6.7, this result indicates an orthogonal property between heads. A closer
look at the computation of Γθ∗ reveals that the relation implemented in-context by the Transformer
in Proposition 6.11 is an extension of a known formula in trigonometry: 2 cos θRθ − I2 = R2θ,
with Rθ the rotation of parameter θ in R2 (see Figure 6.2). Importantly, when δ ≤ H < 2δ = d,
the optimal C∗ in Proposition 6.11 is of rank δ, which corresponds to Lemma 6.10. However,
when H ≥ d, full-rank solutions are achievable.

Under the assumptions of Proposition 6.7, the population loss (6.3) is also a quadratic form in P
and B⊤A. Similarly to Proposition 6.8, global convergence results of gradient descent on such loss
function are still an open problem (Achour et al., 2021). We provide experimental evidence for
convergence in Figure 6.3.
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Figure 6.2: Trigonometric formula implemented by the
Transformer in-context. The minima of the training loss corre-
spond to implementing, up to multiplying factors: 2 cos θRθ −
I2 = R2θ.

Figure 6.3: Matrices A, B, B⊤A and P after training model (6.6) on loss (6.3) with
random initialization. We take d = 10 and T = 15. Left: Unitary context case with H = 10.
Right: Orthogonal context case, with H = 8 < d, which leads to low rank B⊤A. In both cases,
we obtain arbitrarily small final loss. We recover parameters corresponding to our Propositions
6.7 and 6.11.

6.5.3 Positional encoding-only attention.

We end this section by investigating the impact of the context distribution on the trained
positional encoding P . For this, we consider a positional encoding-only Transformer, that is,
we fix B⊤A = Id. In this case, the problem decomposes component-wise, and we only need to
consider the d = 1 case. We therefore consider the AR process st+1 = λst for |λ| = 1. We
break the symmetry of the context distribution: for µ ≥ 1 and θ ∼ U(0, 2π), we define λ = eiθ/µ.
We denote W(µ) as the corresponding distribution. Therefore, we focus on the optimization
problem:

min
p∈RT

l(p) := Eλ∼W(µ)|
T∑

t=1

ptλ
2t−T − λT |2. (6.7)

Here again, the same proof as for Proposition 6.7 shows that the optimal positional encoding is
p∗ = δt=T , meaning that we predict the next token using the last token in the context. However,
depending on µ, (6.7) can be ill-conditioned.

Proposition 6.12 (Conditioning). The Hessian H ∈ RT×T of l in (6.7) is given by

Ht,t′ =
µ

4π(t′ − t) sin(4(t
′ − t)π

µ
).

Denoting σ1(µ) ≥ · · · ≥ σT (µ) its eigenvalues, one has σ1(µ)→ T and σt>1(µ)→ 0 as µ→ +∞.

Therefore, for large µ, H in Proposition 6.7 is poorly conditioned. In such a setting, gradient
descent, even with a large number of iterations, induces a ℓ2 regularization (Yao et al., 2007).
As an informal consequence, approximate solutions computed by gradient descent significantly
deviate from the optimal p∗. As demonstrated experimentally in Figure 6.6 and §6.6, the effect
of this regularization is a spatial smoothing of the positional encoding, which leads to entirely
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different in-context mappings Γ, hence showing the effect of the optimization process on the
in-context autoregressive learning abilities of Transformers.

6.6 Experiments

In this section, we illustrate and extend our results through experiments. Our code in Pytorch
(Paszke et al., 2017) and JAX (Bradbury et al., 2018) is open-sourced at https://github.com
/michaelsdr/ical. We use the standard parametrization of Transformers, that is we train on
(WQ,WK ,WV ,WO).
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Figure 6.4: Histograms of the mean squared errors (MSE)
when fitting an AR process to sequences in D (original,
in blue) or Dshuffle (shuffled, in orange). We only display
MSEs bigger than a threshold of 10−12.

Validation of the token encoding choice. Throughout the chapter, we assume that the s1:T
are generated following an AR process st+1 =Wst. Even though we acknowledge that the AR
process is an overly simplistic model for real-word sentences, we provide empirical justification for
using it by showing that such a process better explains real data than random ones. We use the
nltk package (Bird et al., 2009), and we employ classic literary works, specifically ’Moby Dick’
by Herman Melville sourced from Project Gutenberg. We use the tokenizer and word embedding
layer of a pre-trained GPT-2 model (Radford et al., 2019), and end up with about 325000 token
representations in dimension d = 1280, that we reformat in a dataset D of shape (n, T, d), where
T = 5 (we keep the relative order of each token). We also consider a shuffled counterpart of D
where the shuffling is done across the first two dimensions. In other words, we create a dataset
Dshuffle from a permutation of the tokens of the book.
We then fit AR processes for each sequence in the two datasets using loss (6.5), which we
minimize by solving a linear system. It should be noted that the problem remains non-trivial for
some sequences, despite T being significantly smaller than d. This complexity arises because
certain sequences might contain identical elements with differing successors or predecessors. We
hypothesize that when sequences are shuffled, the number of such inconsistencies increases since
the language’s structure is lost. This hypothesis is validated in Figure 6.4, where we display
the histograms of the fitting losses when they are bigger than 10−12. There are 4 times more
sequences with such an error for the shuffled dataset than for the original. This shows that the
AR process is better suited when data present some semantics.

176

https://github.com/michaelsdr/ical
https://github.com/michaelsdr/ical


1 2 3 4 5 6
Depth

5 10 2

10 2

5 10 3

M
SE

Test Train GD

Figure 6.5: Evolution of the MSE with depth L. We
compare with L steps of gradient descent on the inner
loss (6.5). At initialization, the MSE is between 1
and 2.

Augmented setting. We investigate whether the results of §6.4 still hold without assumptions
6.2 and 1. We consider the model (6.4) on the augmented tokens et = (0, st, st−1). We iterate
relation (6.4) with several layers, using layer normalization (Ba et al., 2016). We consider depth
values from 1 to 6. We generate a dataset with n = 214 sequences with Tmax = 50 and d = 5
(therefore et ∈ R15) for training. We test using another dataset with 210 sequences of the same
shape. We train for 2000 epochs with Adam (Kingma and Ba, 2014) and a learning rate of
5×10−3 to minimize the mean squared error (MSE) min ℓ(Θ) :=

∑Tmax
T=2

1
n

∑n
i=1 ∥T L

Θ (ei1:T )−siT ∥2,
where T L

θ correspond to L layers of (6.4) (we apply the forward rule L times, and then consider
the section of first d coordinates). We compare the error with L steps of gradient descent on
the inner loss (6.5), with a step size carefully chosen to obtain the fastest decrease. We find
out that even though the first Transformer layers are competitive with gradient descent, the
latter outperforms the Transformer by order of magnitudes when L ≥ 3. Results are displayed in
Figure 6.5. The fact that several steps of gradient descent outperform the same number of Tθ
layers is not surprising, as Proposition 6.5 does not generalize to more than one layer. In contrast,
as shown in Appendix 6.B, a full Transformer with all the bells and whistles as described in
Vaswani et al. (2017) (softmax and MLP applied component-wise to each Transformer layer)
outperforms gradient descent and has a similar trend, as shown in Figure 6.10.

Non-Augmented setting. We now investigate whether the results of §6.5 still hold without as-
sumptions 6.2 and 2. We consider the model Tθ in (6.6). We parameterize the positional encoding
in the linear Transformer equation (6.6) using the softmax of a positional attention-only similarity
cost matrix with learnable parameters WQpos and WKpos : Pt,t′ = softmax(⟨WQpospt|WKpospt′⟩),
as we found it to stabilize the training process. We use a similar dataset as in the previous
section, i.e., a training set with 214 sequences, each with 50 elements of dimension d = 10, and
we test using another dataset with 210 sequences of the same shape.

We train models Tθ in (6.6) for 200 epochs with different numbers of heads. We use the Adam
optimizer with a learning rate of 10−2. Without further modification, we do not observe a
significant gain as the number of heads increases. However, when duplicating the data along
the dimension axis, that is et := (st, st), we observe a significant improvement, as illustrated in
Figure 6.7. Understanding why duplicating the data leads to a significant improvement is left for
future work.

177



Figure 6.6: Left: Positional encodings after training for µ ∈ {50, 100, 200, 300}. The first raw
corresponds to the matrix P , and the second raw to a plot of its last raw. Right: Comparison
with the cosine absolute positional encoding standardly used in machine translation Vaswani et al.
(2017) (we display pp⊤). In both cases, we observe an invariance across diagonals. In addition,
for high µ (i.e. small variations of the context), the most recent tokens are more informative, as
imposed by the inductive prior of the cosine positional encoding.
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Figure 6.7: Evolution of the MSE with the number
of heads. At initialization, the MSE is between 0.35
and 1.

To further relate our experimental findings to our theory, we also exhibit an orthogonality
property between heads after training. For this, we take d = 5 to ease the visualization, and
initialize each parameter equally across heads but add a small perturbation .05 × N (0, 1) to
ensure different gradient propagation during training. We then train the model and compare the
quantity (

∑H
h=1(B

⊤
h Bh))(i,j) after training and at initialization. Note that it corresponds to a

measure of orthogonality of heads. Results are displayed in Figure 6.8. We observe that after
training, an orthogonality property appears. In addition, as we are duplicating the tokens across
dimensions, we can see that heads become specialized in attending to some coordinates across
tokens.
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TrainedInit.

Figure 6.8: Matrices (
∑H

h=1(B
⊤
h Bh))(i,j) ∈ R10×10 at initialization and after training. The

trained parameters lead to an orthogonality between heads, as predicted by our theory.

Change in the context distribution. We consider the setting of §6.5.3, using the empirical
loss counterpart of (6.7), averaged over T ∈ {2, · · · , Tmax}. We generate a dataset with 104

examples and Tmax = 30. We train our positional encoding-only model with gradient descent
and stop training (early stopping) when the loss is smaller than 10−3. We initialize Pt,t′ = 0.
Results are in Figure 6.6, where we mask coefficients PT−1,T (which are close to 1 after training)
in the display to investigate the behavior of the extra coefficients. We observe that the trained
positional encoding exhibits an invariance across diagonals. Importantly, each row Pt has a
smooth behavior with t′, that we compare to absolute cosine positional encodings (Vaswani et al.,
2017).

Conclusion

In this work, we study the in-context autoregressive learning abilities of linear Transformers
to learn autoregressive processes of the form st+1 =Wst. In-context autoregressive learning is
decomposed into two steps: estimation of W with an in-context map Γ, followed by a prediction
map ψ. Under commutativity and parameter structure assumptions, we first characterized Γ
and ψ on augmented tokens, in which case Γ is a step of gradient descent on an inner objective
function. We also considered non-augmented tokens and showed that Γ corresponds to a non-
trivial geometric relation between tokens, enabled by an orthogonality between trained heads and
learnable positional encoding. We also studied positional encoding-only attention and showed
that approximate solutions of minimum ℓ2 norm are favored by the optimization. Moving beyond
commutativity assumptions, we extended our theoretical findings to the general case through
experiments.

Future work. Investigating the case where τ = T in the non-augmented setting would lead
to approximated in-context mappings, where achieving zero loss is no longer possible. This
investigation would provide further insight into the role of positional encoding in estimating W
in-context. Another investigation left for future work is to consider the case of non-commuting
context matrices and to relate the computation of a Transformer to a proxy for a gradient flow for
estimating W in-context, using the connection between Transformers and gradient flows Sander
et al. (2022a).
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6.A Proofs

In what follows, as we consider complex numbers, we use the hermitian product over Cd, that is
⟨α, β⟩ := β⋆α =

∑
i αiβ̄i.

We denote Ud = {λ ∈ Cd||λi| = 1∀i ∈ {1, · · · , d}}.

6.A.1 Proof of Lemma 6.3.

Proof. Let, for s ∈ Rd, W 1
V s := (0, s, 0) ∈ R3d and W 2

V s := (0, 0, s).

We now simply consider a positional attention-only model, that is, for h ∈ {1, 2}:

Ah
t,: = softmax(P h

t,:).

We can choose the positional encodings P 1 and P 2 such that A1
t,t′ ≃ δt′=t and A2

t,t′ ≃ δt′=t−1.

Then
2∑

h=1

t∑

t′=1

Ah
t,t′W

h
V st′ ≃ (0, st, st−1) = et.

6.A.2 Proof of Proposition 6.4.

Proof. We briefly recall the reasoning as presented in Von Oswald et al. (2023b), and consider
the case W0 = 0 for simplicity. See Von Oswald et al. (2023b) for a full proof. Let

A =




0 0 0
0 0 0
0 Id 0


 and B =




0 ηId 0
0 0 0
0 0 0


 . (6.8)

Then the section vector of the first d coordinates in (6.4) is η
∑T

t=1 sts
⊤
t−1sT .

The gradient of L at W0 = 0 is:

∇WL(0, e1:T ) = −
T−1∑

t=1

(st+1)s
⊤
t .

Therefore, (6.4) corresponds to a single step of gradient descent starting from W0 = 0.

6.A.3 Proof of Proposition 6.5.

In what follows, the sums over t are from t = 1 to T and the sums over j are from j = 1 to
d.

We first consider the following Lemma.

Lemma 6.13. Under assumptions 6.2 and 1, the loss of the linear Transformer writes:

ℓ((ai), (bi)) = Eλ

Tmax∑

T=2

d∑

i=1

|
∑

t,j,α∈A,β∈B
cα,βλ

T−t−α
j λt−1+β

i − λTi |2 (6.9)

with A = {−1, 0, 1} and B = {−1, 0}. We have cα,β = uαvβ for u0 = a1 + a4, u1 = a2, u−1 = a3,
v0 = b1 and v−1 = b2.
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Proof. One has AeT = (0, A1sT + A2sT−1, A3sT + A4sT−1). Therefore one has ⟨AeT , et⟩ =
s⋆tA1sT + s⋆tA2sT−1 + s⋆t−1A3sT + s⋆t−1A4sT−1. Since (Bet)1:d = B1st + B2st−1, one obtains
through (6.4):

Tθ(e1:T ) =
∑

t

(a1s
⋆
t sT + a2s

⋆
t sT−1 + a3s

⋆
t−1sT + a4s

⋆
t−1sT−1)(b1st + b2st−1).

Developing, we obtain

Tθ(e1:T )i =
∑

t,j,α∈A
uαλ

T−t−α
j

∑

β∈B
vβλ

t−1+β
i =

∑

t,j,α∈A,β∈B
cα,βλ

T−t−α
j λt−1+β

i ,

which implies the result.

Using the notations of Lemma 6.13, Proposition 6.5 now writes as follows.

Proposition 6.14 (In-context autoregressive learning with gradient-descent.). Suppose C = CU ,
assumptions 6.2 and 1. Then loss (6.9) is minimal for cα,β = 0 if (α, β) ̸= (−1, 0) and

c−1,0 =
∑Tmax

T=2 T∑Tmax
T=2 (T 2+(d−1)T )

. Therefore, the optimal in-context map Γθ∗ is one step of gradient

descent starting from the initialization λ = 0, with a step size asymptotically equivalent to 3
2Tmax

with respect to Tmax.

Proof. We develop the term in the sum in (6.9):

|
∑

t,j,α∈A,β∈B
cα,βλ

T−t−α
j λt+β−1

i − λTi |2

=
∑

t1,j1,α1,β1,t2,j2,α2,β2

cα1,β1cα2,β2λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2
i

− 2Real(
∑

t,j,α∈A,β∈B
cα,βλ

T−t−α
j λt+β−1

i λ−T
i ) + 1.

We now need to compute the expectations of the first two terms in the sum. Because Eλ(λ
k
i ) = δk=0

and the λi are i.i.d., most terms will be zeros.

• For the first term, one needs to look at the different possible values for (j1, j2, i) to calculate
Eλ(λ

T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2
i ).

- 1) If j1 = j2 = i, it is Eλ(λ
α2−α1+β1−β2
i ) = δα1−α2=β1−β2 .

- 2) If j1 = j2 := j ̸= i, it is Eλ(λ
t2−t1+α2−α1
j )Eλ(λ

t1−t2+β1−β2
i ) = δt2−t1=α1−α2=β1−β2 .

- 3) If j1 ̸= j2, i ̸= j1, i ̸= j2, then Eλ(λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2
i ) = δt1−t2=β2−β1,T−t1−α1=0,T−t2−α2=0.

- 4) If j1 ̸= j2 and i = j1, the expectation is δT−α1−t2+β1−β2=0,T=t2+α2 , and similarly when
j1 ̸= j2 and i = j2.

As a consequence, we see that all the terms that do not satisfy α1 − α2 = β1 − β2 will lead
to 0 expectation, which therefore implies that the first term writes:

Eλ(
∑

t1,j1,α1,β1,t2,j2,α2,β2,α1−α2=β1−β2

cα1,β1cα2,β2λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2
i ).
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• For the second term, we have
∑

t,j,α∈A,β∈B
cα,βλ

T−t−α
j λt+β−1

i λ−T
i =

∑

t,α,β

cα,β
∑

j

(λT−t−α
j λt+β−1−T

i ).

- When i ̸= j, the expectation of λT−t−α
j λt+β−1−T

i is not 0 if and only if t + α = T and
T = t + β − 1. Given that A = {−1, 0, 1} and B = {−1, 0}, this implies α = β − 1 and
therefore α = −1 and β = 0. But then we have t = T + 1 which is not possible.

- When i = j, the expectation of λT−t−α
j λt+β−1−T

i = λβ−α−1
i is not 0 if and only if β = α+1,

that is β = 0 and α = −1.

Therefore, one has

Eλ(
∑

t,α,β

cα,β
∑

j

(λT−t−α
j λt+β−1−T

i )) =
∑

t

c−1,0 = Tc−1,0

and the second term is −2Tc−1,0.

Back to the full expectation, isolating the term in c2−1,0 from the first term, we get

Eλ|
∑

t,j,α∈A,β∈B
cα,βλ

T−1−t−α
j λt+β−1

i − λTi |2 = (6.10)

Eλ(
∑

t1,j1,α1,β1,t2,j2,α2,β2,α1−α2=β1−β2,(α1,α2,β1,β2 )̸=(−1,−1,0,0)

cα1,β1cα2,β2λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2
i )

+KT c
2
−1,0 − 2Tc−1,0 + 1,

for some constant KT .

We now examine the terms in the sum within the expectation. We want to show that E1 = E2

where
E1 := {(α1, α2, β1, β2)|α1 − α2 = β1 − β2, (α1, α2, β1, β2) ̸= (−1,−1, 0, 0)}

and

E2 := {(α1, α2, β1, β2)|α1 − α2 = β1 − β2, (α1, β1) ̸= (−1, 0), (α2, β2) ̸= (−1, 0)}.

We already have E2 ⊂ E1. If (α1, α2, β1, β2) ∈ E1\E2, then either (α1, β1) = (−1, 0) or
(α2, β2) = (−1, 0). If (α1, β1) = (−1, 0), since α1 − α2 = β1 − β2, then α2 = β2 − 1, which
necessarily implies β2 = 0 and α2 = −1, which contradicts the fact that (α1, α2, β1, β2) ∈ E1.
Similarly, if (α2, β2) = (−1, 0) and α1 − α2 = β1 − β2, then β1 = 0 and α1 = −1. Therefore,
E1 = E2, and

Eλ(
∑

t1,j1,t2,j2,(α1,α2,β1,β2)∈E1

cα1,β1cα2,β2λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2
i ) =

Eλ(
∑

t1,j1,t2,j2,(α1,α2,β1,β2)∈E2

cα1,β1cα2,β2λ
T−t1−α1
j1

λ−T+t2+α2
j2

λt1−t2+β1−β2
i ) =

Eλ(|
∑

t,j,α∈A,β∈B,(α,β)̸=(−1,0)

cα,βλ
T−t−α
j λt+β−1

i |2) ≥ 0.
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We are interested in the minimum of (6.10). The minimum of KT c
2
−1,0 − 2Tc−1,0 + 1 is reached

for c−1,0 ̸= 0. We also just showed that the first term is non-negative, so the minimum will be
reached when (almost surely in λ ∼ U(CU ))

∑

t,j,α∈A,β∈B,(α,β)̸=(−1,0)

cα,βλ
T−t−α
j λt+β−1

i = 0.

In particular, the terms corresponding to monomials in λi are
∑

t,α∈A,β∈B,(α,β) ̸=(−1,0)

cα,βλ
T−α+β−1
i = (T

∑

α∈A,β∈B,(α,β)̸=(−1,0)

cα,β)λ
T−α+β−1
i = 0.

Therefore, identifying the coefficients of this polynomial gives c1,−1 = c−1,−1+c0,0 = c1,0+c0,−1 =
0. We want to show that this implies v−1 = u1 = u0 = 0.

If v−1 ≠ 0, then because c1,−1 = 0, we have u1 = 0. From c1,0 + c0,−1 = 0, it follows c0,−1 = 0
and therefore u0 = 0. From c−1,−1 + c0,0 = 0, this implies c−1,−1 = 0 and thus u−1 = 0, which
contradicts c−1,0 ̸= 0. Therefore, v−1 = 0.

Now, if u1 ̸= 0, then v−1 = 0, and from c−1,−1+c0,0 = 0, we have c0,0 = 0. But because c−1,0 ̸= 0,
we have u0 = 0, which combined with c1,0 + c0,−1 = 0 implies c1,0 = 0, which is impossible
because v0 ̸= 0. Therefore, u1 = 0.

So u1 = v−1 = 0, and c0,0 = 0, so that u0 = 0. This shows that loss (6.9) is minimal for cα,β = 0
if (α, β) ̸= (−1, 0).
Last, we need to calculate the constant

KT := Eλ(
∑

t1,j1,t2,j2

λT−t1+1
j1

λ−T+t2−1
j2

λt1−t2
i ).

Back to the different possible values for (j1, j2, i) analyzed above, we get non-zeros when
j1 = j2 = i and when j1 = j2 ̸= i. In cases 3) and 4) we obtain as a necessary condition for
non-zero expectation: t2 = T + 1 or t1 = T + 1; which is not possible. Therefore,

KT = (
∑

j1=j2=i

∑

t1,t2

1) + (
∑

j1=j2 ̸=i

∑

t1=t2

1) = T 2 + (d− 1)T.

We now denote η = a3b1 = c−1,0. Replacing the zero terms in loss (6.9), we obtain

d

Tmax∑

T=2

(
η2(T 2 + (d− 1)T )− 2ηT + 1

)
,

for which the argmin is given by

η∗ =

∑Tmax
T=2 T∑Tmax

T=2 (T
2 + (d− 1)T )

∼ 3

2Tmax
as Tmax → +∞.

Finally at optimality,

Tθ∗(e1:T ) =
∑

t

η∗s⋆t−1sT st = η∗(
∑

t

sts
⋆
t−1)sT = −η∗∇WL(0, e1:T )sT = Γθ∗(e1:T )sT

with Γθ∗(e1:T ) := −η∗∇WL(0, e1:T ).
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6.A.4 Proof of Lemma 6.6.

Proof. For a given input sequence e1:T = s1:T = (s, λ⊙ s, · · · , λT−1 ⊙ s), with context λ ∈ Ud,
one has

Tθ(e1:T ) =
T∑

t=1

PT−1,t

H∑

h=1

⟨λt−1 ⊙ s, ah ⊙ λT−2 ⊙ s⟩bh ⊙ λt−1 ⊙ s.

We have

(⟨λt−1 ⊙ s, ah ⊙ λT−2 ⊙ s⟩bh ⊙ λt−1 ⊙ s)i =
d∑

j=1

ajhλ
2−T
j λt−1

j bihλ
t−1
i .

Since we precisely have

([B⊤A]λt−T+1 ⊙ λt−1)i =
d∑

j=1

H∑

h=1

biha
j
hλ

t−T+1
j λt−1

i ,

this gives us the desired result.

Remark. In fact, looking at the above proof, considering arbitrary real values for the vector
s0 = s, one can absorb the terms in s2j in each ajh and the terms in si in each bih, since these
are learnable parameters. Therefore, our results can be adapted to any arbitrary initial value
s0.

6.A.5 Proof of Proposition 6.7.

Proof. Denote C = B⊤A. Let us suppose that we have an optimal solution θ such that l(θ) = 0.
Therefore, for almost all λ ∈ Ud and st = λt−1, one has Tθ(s1:T ) = λT . Then, ∀i ∈ {1, · · · , d}:

T∑

t=1

PT−1,t

d∑

j=1

Cijλ
t−T+1
j λt−1

i = λTi .

By identifying the coefficients of the polynomial in the λi’s, we see that one must have for all
T ≥ 2 that PT−1,t = 0 if t ̸= T , and for all 1 ≤ i ≤ d, pT−1,TCii = 1, and Cij = 0 for i ̸= j.

An optimal in-context mapping is then obtained by considering the forward rule of Tθ∗ for optimal
parameters. One gets:

Tθ∗(e1:T ) = (ēT−1 ⊙ eT )⊙ (eT ).

6.A.6 Proof of Proposition 6.8.

Proof. The loss writes

ℓ(θ) =

Tmax∑

T=2

Ediag λ∼W∥
T∑

t=1

PT−1,tCλ
t−T+1 ⊙ λt−1 − λT ∥2.

We compute the expectation of each term in the sum by first developing it.
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One has

∥
T∑

t=1

PT−1,tCλ
t−T+1 ⊙ λt−1 − λT ∥2 =

∑

t,t′

PT−1,tPT−1,t′
∑

i,j,k

CijCikλ
T−t−1
j λt

′−T+1
k λt

′−t
i

−2Real(
∑

t

PT−1,t

∑

i,j

Cijλ
T−t−1
j λT−t+1

i ) + d.

Looking at the expectation of the first term
∑

t,t′

PT−1,tPT−1,t′
∑

i,j,k

CijCikE(λT−t−1
j λt

′−T+1
k λt

′−t
i ),

we see that one has to calculate for t, t′, i, j, k

E(λT−t−1
j λt

′−T+1
k λt

′−t
i ).

When j ̸= k, it is δt′=t=T−1. When j = k it is δt′=t.

Therefore
∑

t,t′

PT−1,tPT−1,t′
∑

i,j,k

CijCikE(λT−t−1
j λt

′−T+1
k λt

′−t
i ) =

∑

t=t′

P 2
T−1,t

∑

i,j

C2ij + P 2
T−1,T−1

∑

i,j,k

Ci,jCi,k =

∥PT−1∥2∥C∥2F + P 2
T−1,T−1S(C

⊤C).

Similarly, because E(λT−t−1
j λT−t+1

i ) = δt=T,i=j , the second term is

−2E(Real(
∑

t

PT−1,t

∑

i,j

Cijλ
T−t−1
j λT−t+1

i )) = −2PT−1,TTr(C).

This concludes the proof.

6.A.7 Proof of Proposition 6.9.

Proof. Let us denote a(t), b(t) and p(t) the functions defined by the gradient flow on loss ℓ, that
is ȧ = −∇aℓ(a, b, p) and similarly for b and p. We start with the result from Nguegnang et al.
(2021); Achour et al. (2021), which states that a(t), b(t), and p(t) are bounded and converge to a
stationary point (a∗, b∗, p∗) as t→∞:

lim
t→∞

(a(t), b(t), p(t)) = (a∗, b∗, p∗).

The possible stationary points are either global or non-global minima. The conditions for these
are:

• Global minimum if p∗a∗b∗ = 1

• Non-global minimum if a∗b∗ = 0, a∗p∗ = 0 and b∗p∗ = 0 and therefore

p∗a∗b∗ = 0.

If the system were to converge to a non-global minimum, we would therefore have

ℓ(+∞) = |p∗a∗b∗ − 1| = |0− 1| = 1 > ℓ(0)

This is a contradiction because the energy should have decreased over time.

As a result, the only remaining possibility for the stationary points is that they must satisfy
p∗a∗b∗ = 1. Therefore, the functions a(t), b(t), and p(t) must converge to a global minimum.
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6.A.8 Proof of Lemma 6.10.

Proof. For the announced parameters, the problem simply decomposes into sub-problems in
dimension 2. Indeed, we have for all i ∈ {1, . . . , δ}:

(Tθ∗(e1:T ))2i−1 = −
1

2
(λ02i−1+λ̄

0
2i−1)λ

T−2
2i−1+(λ12i−1+λ̄

1
2i−1)λ

T−1
2i−1 = λT−2

2i−1(−1+λ22i−1+1) = λT2i−1.

Similarly,
(Tθ∗(e1:T ))2i = λT2i.

6.A.9 Proof of Proposition 6.11.

Proof. The proof is similar to Proposition 6.A.5, by regrouping each λi with λ̄i and identifying
coefficients in two polynomials. More precisely, one must have

T∑

t=1

PT−1,t

d∑

j=1

C2i−1,jλ
t−T+1
j λt−1

2i−1 = λT2i−1.

Therefore, isolating terms in λ2i−1 (recall that λ2i = 1/λ2i−1), and developing, we get, noting
p := PT−1:

C2i−1,2i−1(
∑

t<T−1

ptλ
2t−T
2i−1 + pT−1λ

T−2
2i−1 + pTλ

T
2i−1) +

∑

t

ptC2i−1,2iλ
T−2
2i−1 = λT2i−1.

Identifying gives (C2i−1,2i−1 + C2i−1,2i)pT−1 + C2i−1,2ipT = 0, C2i−1,2i−1pT = 1 and pt<T−1 = 0.

Similarly, on the conjugates, (C2i,2i + C2i,2i−1)pT−1 + C2i,2i−1pT = 0, C2i,2ipT = 1.

Identifying the other terms gives C2i,j = C2i−1,j = 0 for j ̸= 2i and j ̸= 2i− 1.

Interpretation. Up to rescaling, the relation pTCi,i = 1 gives pT = Ci,i = 1, and there-
fore

C2i−1,2i + (1 + C2i−1,2i)pT−1 = C2i,2i−1 + (1 + C2i,2i−1)pT−1 = 0, (6.11)

which gives C2i−1,2i = C2i,2i−1. Therefore, C is symmetric and has the form diag(Jb, . . . , Jb) with
Jb = ((1, b), (b, 1)) and b = −pT−1/(1 + pT−1). If H < d, C cannot be full rank, and therefore
necessarily C2i,2i−1 = 1 or −1. But C2i,2i−1 = −1 is impossible given (6.11). We then recover
Lemma 6.10.

6.A.10 Proof of Proposition 6.12

Proof. One has that the second order term in the quadratic form (6.7) writes

⟨p|Hp⟩ =
∑

t,t′

ptpt′Eλ∼W(µ)λ
2(t′−t).
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We can calculate this expectation in closed form. Writing α = 2π
µ , it gives

Eλ∼W(µ)λ
2(t′−t) =

1

α

∫ α

0
e2iθ(t

′−t)dθ,

which gives i
2α(t′−t) [1− e2i(t

′−t)α] if t ̸= t′ and 1 otherwise. Since ⟨p|Hp⟩ is real, we can identify
the real parts so that

Ht,t′ = (µ/(4π(t′ − t))) sin(4(t′ − t)π
µ
).

We now turn to the eigenvalues of H. H is a smooth function of α:

H : [0, 2π]→ ST ,

where ST are the symmetric matrices of RT×T . Using Th. 5.2 from Kato (2013), we know that
the eigenvalues of H can be parametrized as continuous functions ν1(α) ≥ ν2(α) ≥ · · · νT (α).
Since for α = 0, the eigenvalues of H are T, 0, · · · 0, and recalling that µ = 2π

α , we obtain the
result.

6.B Additional Experiments

Effect of the addition of softmax layers and MLP layers on the trained solutions.
We consider the unitary context matrix setup of section 6.5. As mentionned, we could not find
a natural way to express the global minimum of the training loss when a softmax layer was
involved, even in dimension 1. To get more insight, we conducted an additional experiment where
we trained different models with and without softmax and MLP layers. We used d = 1, and
T = 10, and a hidden dimension of 32 in the MLP. Results are shown in Figure 6.9, where it
is clear that in the case of commuting context matrices, using a softmax is incompatible with
learning the underlying in-context mapping.
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Figure 6.9: Training loss with training epoch for different configurations of the Transformer’s
architecture, when using a softmax (SM) and an MLP or not.

Transformer with all the bells and whistles and gradient descent. The experiment
displayed in Figure 6.5 shows that linear attention fails to compete with gradient descent when
there are more than 2 layers. In contrast, a full Transformer with all the bells and whistles as
described in Vaswani et al. (2017) (softmax and MLP applied component-wise to each transformer
layer) outperforms gradient descent and has a similar trend, as shown in Figure 6.10. The training
procedure and the dataset are identical to those described in the Augmented setting paragraph
of Section 6.6.
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Figure 6.10: Evolution of the mean squared errors (MSE) with depth L for a vanilla Transformer
Vaswani et al. (2017). We compare with L steps of gradient descent (GD) on the inner loss (6.5).
At initialization, the MSE is between 1 and 2. .
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7
Fast, Differentiable and Sparse Top-k: a
Convex Analysis Perspective

The top-k operator returns a sparse vector, where the non-zero values correspond to the k
largest values of the input. Unfortunately, because it is a discontinuous function, it is difficult to
incorporate in neural networks trained end-to-end with backpropagation. Recent works have
considered differentiable relaxations, based either on regularization or perturbation techniques.
However, to date, no approach is fully differentiable and sparse. In this chapter, we propose new
differentiable and sparse top-k operators. We view the top-k operator as a linear program over
the permutahedron, the convex hull of permutations. We then introduce a p-norm regularization
term to smooth out the operator, and show that its computation can be reduced to isotonic
optimization. Our framework is significantly more general than the existing one and allows for
example to express top-k operators that select values in magnitude. On the algorithmic side,
in addition to pool adjacent violator (PAV) algorithms, we propose a new GPU/TPU-friendly
Dykstra algorithm to solve isotonic optimization problems. We successfully use our operators
to prune weights in neural networks, to fine-tune vision transformers, and as a router in sparse
mixture of experts.
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7.1 Introduction

Finding the top-k values and their corresponding indices in a vector is a widely used building
block in modern neural networks. For instance, in sparse mixture of experts (MoEs) (Shazeer
et al., 2017; Fedus et al., 2022), a top-k router maps each token to a selection of k experts (or
each expert to a selection of k tokens). In beam search for sequence decoding (Wiseman and
Rush, 2016), a beam of k possible output sequences is maintained and updated at each decoding
step. For pruning neural networks, the top-k operator can be used to sparsify a neural network,
by removing weights with the smallest magnitude (Han et al., 2015; Frankle and Carbin, 2018).
Finally, top-k accuracy (e.g., top-3 or top-5) is frequently used to evaluate the performance of
neural networks at inference time.
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Figure 7.1: Illustration of our differentiable and sparse top-k mask. For k = 2, we
consider θ(s) = (3, 1,−1 + s, s) ∈ R4 and plot topkmask(θ(s))2 + topkmask(θ(s))3 as a function
of s. We compare the hard version (no regularization) with our proposed operator using p-norm
regularization: p = 2 leads to differentiable a.e. operator; p = 4/3, leads to a differentiable
operator. Both operators are sparse: they are exactly 0 for some values of s.

However, the top-k operator is a discontinuous piecewise affine function with derivatives either
undefined or constant (the related top-k mask operator, which returns a binary encoding of
the indices corresponding to the top-k values, has null derivatives). This makes it hard to
use in a neural network trained with gradient backpropagation. Recent works have considered
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differentiable relaxations, based either on regularization or perturbation techniques (see §7.2 for
a review). However, to date, no approach is differentiable everywhere and sparse. Sparsity is
crucial in neural networks that require conditional computation. This is for instance the case in
sparse mixture of experts, where the top-k operator is used to “route” tokens to selected experts.
Without sparsity, all experts would need to process all tokens, leading to high computational
cost. This is also the case when selecting weights with highest magnitude in neural networks:
the non-selected weights should be exactly 0 in order to optimize the computational and memory
costs.

In this work, we propose novel differentiable everywhere and sparse top-k operators (see Figure
7.1). We build upon the framework of Blondel et al. (2020b), which casts sorting and ranking
as linear programs over the permutahedron, and uses a reduction to isotonic optimization. We
significantly generalize that framework in several ways. Specifically, we make the following
contributions:

• After reviewing related work in §7.2 and background in §7.3, we introduce our generalized
framework in §7.4. We introduce a new nonlinearity φ, allowing us to express new operators
(such as the top-k in magnitude). In doing so, we also establish new connections between
so-called k-support norms and the permutahedron.

• We introduce a regularization term to obtain a relaxed top-k operator. In particular, using
p-norm regularization, we obtain the first differentiable everywhere and sparse top-k operator
(Figure 7.3).

• In §7.5, we derive pool adjacent violator (PAV) algorithms for solving isotonic optimization
when using φ and/or when using p-norm regularization. We show that the Jacobian of our
operator can be computed in closed form.

• As a GPU/TPU friendly alternative to PAV, we propose a Dykstra algorithm to solve isotonic
optimization, which is easy to vectorize in the case p = 2.

• In §7.6, we chose to focus on three applications of our operators. First, we use them to prune
weights in a multilayer perceptron during training and show that they lead to better accuracy
than with a hard top-k. Second, we define top-k losses to fine-tune vision transformers (ViTs)
and obtain better top-k accuracy than with the cross-entropy loss. Finally, we use our operators
as a router in vision mixture of experts, and show that they outperform the hard top-k router.

7.2 Related work

Differentiable loss functions. Several works have proposed a differentiable loss function as a
surrogate for a discrete, discontinuous metric. For example, loss functions have been proposed for
top-k accuracy (Lapin et al., 2015, 2016; Berrada et al., 2018; Petersen et al., 2022) and various
ranking metrics (Chapelle and Wu, 2010; Adams and Zemel, 2011; Rolínek et al., 2020).

Differentiable operators. In a different line of research, which is the main focus of this work,
a differentiable operator is proposed, which can be used either as an intermediate layer in a
neural network or as final output, fed into an arbitrary loss function. For example, Niepert
et al. (2021) proposed a framework for computing gradients of discrete probability distributions
or optimization problems. Amos et al. (2019) and Qian et al. (2022) proposed a smooth (but
not sparse) top-k operator based on binary entropy regularization. Related projections on the
capped simplex were proposed (Martins and Kreutzer, 2017; Malaviya et al., 2018; Blondel, 2019)
in different contexts. These works use ad-hoc algorithms, while we use a reduction to isotonic
optimization. Cuturi et al. (2019) proposed a relaxation of the sorting and ranking operators
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based on entropy-regularized optimal transport and used it to obtain a differentiable (but again
not sparse) top-k operator. Its computation relies on Sinkhorn’s algorithm (Sinkhorn, 1967;
Cuturi, 2013), which in addition makes it potentially slow to compute and differentiate. A similar
approach was proposed by Xie et al. (2020). Petersen et al. (2021) propose smooth differentiable
sorting networks by combining differentiable sorting functions with sorting networks. Other
relaxation of the sort and operators have been proposed by Grover et al. (2019) and Prillo and
Eisenschlos (2020).

The closest work to ours is that of Blondel et al. (2020b), in which sorting and ranking are cast as
linear programs over the permutahedron. To make these operators differentiable, regularization
is introduced in the formulation and it is shown that the resulting operators can be computed
via isotonic optimization in O(n log n) time. Unfortunately, the proposed operators still include
kinks: they are not differentiable everywhere. The question of how to construct a differentiable
everywhere and sparse relaxation with O(n log n) time complexity is therefore still open. In this
work, we manage to do so by using p-norm regularization. Furthermore, by introducing a new
nonlinearity φ, we significantly generalize the framework of Blondel et al. (2020b), allowing us for
instance to express a new top-k operator in magnitude. We introduce a new GPU/TPU friendly
Dykstra algorithm as an alternative to PAV.

Instead of introducing regularization, another technique relies on perturbation (Berthet et al.,
2020). This technique has been used to obtain a differentiable (but still not sparse) top-k for
image patch selection (Cordonnier et al., 2021).

Pruning weights with small magnitude. Many recent works focus on neural network
pruning, where parameters are removed to significantly reduce the size of a model. See Blalock
et al. (2020) for a recent survey. A simple yet popular method for pruning neural networks is
by global magnitude pruning Collins and Kohli (2014); Han et al. (2015): weights with lowest
absolute value are set to 0. While most of the pruning techniques are performed after the
model is fully trained Blalock et al. (2020), some works prune periodically during training Gale
et al. (2019). However, to the best of our knowledge, pruning by magnitude is not done in a
differentiable fashion. In this work, we empirically show that pruning weights with a differentiable
(or differentiable almost everywhere) top-k operator in magnitude during training leads to faster
convergence and better accuracy than with a “hard” one.

Top-k operator for mixture of experts. Sparse mixture of experts models (MoEs) Shazeer
et al. (2017) are a class of deep learning models where only a small proportion of the model, known
as experts, is activated, depending on its input. Therefore, sparse MoEs are able to increase the
number of parameters without increasing the time complexity of the model. Sparse MoEs have
achieved great empirical successes in computer vision Riquelme et al. (2021); Zhou et al. (2022)
as well as natural language processing Shazeer et al. (2017); Lewis et al. (2021); Fedus et al.
(2021). At the heart of the sparse MoE model is its routing mechanism, which determines which
inputs (or tokens) are assigned to which experts. In the sparse mixture of experts literature, some
works have recently proposed new top-k operators in the routing module. Hazimeh et al. (2021)
proposed a binary encoding formulation to select non-zero weights. However, their formulation
does not approximate the true top-k operator and sparsity is only supported at inference time,
not during training. Liu et al. (2022b) proposed an optimal transport formulation supporting
k-sparsity constraints and used it for sparse mixture of experts. In this work, we propose to
replace the hard top-k router, which is a discontinuous function, by our smooth relaxation.
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7.3 Background

Notation. We denote a permutation of [n] by σ = (σ1, . . . , σn) and its inverse by σ−1. When
seen as a vector, we denote it σ. We denote the set of all n! permutations by Σ. Given a vector
x ∈ Rn, we denote the version of x permuted according to σ by xσ := (xσ1 , . . . , xσn). We denote
the i-th largest value of x ∈ Rn by x[i]. Without loss of generality, we always sort values in
descending order. The conjugate of f(x) is denoted by f∗(y) := supx∈Rn⟨x,y⟩ − f(x).

Review of operators. We denote the argsort operator as the permutation σ sorting x ∈ Rn,
i.e.,

argsort(x) := σ, where xσ1 ≥ · · · ≥ xσn .

We denote the sort operator as the values of x ∈ Rn in sorted order, i.e.,

sort(x) := xσ, where σ = argsort(x).

The value [sort(x)]i is also known as the i-th order statistic. We denote the rank operator as the
function returning the positions of the vector x ∈ Rn in the sorted vector. It is formally equal to
the argsort’s inverse permutation:

rank(x) := σ−1, where σ = argsort(x).

Smaller rank [rank(x)]i means that xi has higher value. The top-k mask operator returns a
bit-vector encoding whether each value xi is within the top-k values or not:

[topkmask(x)]i :=

{
1, if [rank(x)]i ≤ k
0, otherwise.

.

The top-k operator returns the values themselves if they are within the top-k values or 0
otherwise, i.e.,

topk(x) := x ◦ topkmask(x),

where ◦ denotes element-wise multiplication. The top-k in magnitude operator is defined
similarly as

topkmag(x) := x ◦ topkmask(|x|).

To illustrate, if x3 ≥ x1 ≥ x2 and |x2| ≥ |x3| ≥ |x1|, then

• argsort(x) = (3, 1, 2)

• sort(x) = (x3, x1, x2)

• rank(x) = (2, 3, 1)

• topkmask(x) = (1, 0, 1)

• topk(x) = (x1, 0, x3),

• topkmag(x) = (0, x2, x3),

where in the last three, we used k = 2.
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Permutahedron. The permutahedron associated with a vector w ∈ Rn, a well-known object
in combinatorics (Bowman, 1972; Ziegler, 2012), is the convex hull of the permutations of w,
i.e.,

P (w) := conv({wσ : σ ∈ Σ}) ⊂ Rn.

We define the linear maximization oracles (LMO) associated with P (w) by

f(x,w) := max
y∈P (w)

⟨x,y⟩

y(x,w) := argmax
y∈P (w)

⟨x,y⟩ = ∇1f(x,w),
(7.1)

where ∇1f(x,w) is technically a subgradient of f w.r.t. x. The LMO can be computed in
O(n log n) time. Indeed, the calculation of the LMO reduces to a sorting operation, as shown in
the following known proposition. A proof is included for completeness in Appendix 7.A.1.

Proposition 7.1. (Linear maximization oracles)

If w1 ≥ · · · ≥ wn (if not, sort w), then

f(x,w) =
n∑

i=1

wix[i] and y(x,w) = wrank(x).

LP formulations. Let us denote the reversing permutation by ρ := (n, n− 1, . . . , 1). Blondel
et al. (2020b) showed that the sort and rank operators can be formulated as linear programs
(LP) over the permutahedron:

sort(x) = y(ρ,x) = argmax
y∈P (x)

⟨ρ,y⟩

rank(x) = y(−x,ρ) = argmax
y∈P (ρ)

⟨−x,y⟩.

In the latter expression, the minus sign is due to the fact that we use the convention that smaller
rank indicates higher value (i.e., the maximum value has rank 1).

Although not mentioned by Blondel et al. (2020b), it is also easy to express the top-k mask
operator as an LP

topkmask(x) = y(x,1k) = argmax
y∈P (1k)

⟨x,y⟩, (7.2)

where 1k := (1, ..., 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

). For this choice of w, the permutahedron enjoys a particularly

simple expression

P (1k) = {y ∈ Rn : ⟨y,1⟩ = k,y ∈ [0, 1]n}

and P (1k/k) is known as the capped simplex (Warmuth and Kuzmin, 2008; Blondel et al., 2020a).
This is illustrated in Figure 7.2. To obtain relaxed operators, Blondel et al. (2020b) proposed to
introduce regularization in (7.1) (see “recovering the previous framework” in the next section)
and used a reduction to isotonic optimization.
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Figure 7.2: The permutahedron P (w) is a polytope whose vertices are permutations of w.
Depending, on the choice of w, it can express several known polytopes. When w = (1, 0, 0),
P (w) is the probability simplex (light beige), which corresponds to the top-1 setting. When
w = (12 ,

1
2 , 0), P (w) is the capped probability simplex (blue), which corresponds to the top-k

setting (here, with k = 2). When w = (23 ,
1
3 , 0), P (w) is an hexagon, which corresponds to the

partial ranking setting (gray).

7.4 Proposed generalized framework

In this section, we generalize the framework of Blondel et al. (2020b) by adding an optional
nonlinearity φ(x). In addition to the operators covered by the previous framework, this allows
us to directly express the top-k in magnitude operator, which was not possible before. We also
support p-norm regularization, which allows to express differentiable and sparse operators when
1 < p < 2.

Introducing a mapping φ. Consider a mapping φ(x) := (φ(x1), . . . , φ(xn)). Given x ∈ Rn

and w ∈ Rn, we define
fφ(x,w) := f(φ(x),w)

yφ(x,w) := ∇1fφ(x,w).

When φ(x) = x (identity mapping), we clearly recover the existing framework, i.e., fφ(x,w) =
f(x,w) and yφ(x,w) = y(x,w).

When φ(x) ̸= x, our framework starts to differ from the previous one, since φ affects differentiation.
By the chain rule and Danskin’s theorem (1966), we get

yφ(x,w) := ∇1fφ(x,w)

= ∂φ(x)⊤y(φ(x),w)

= (φ′(x1), . . . , φ
′(xn)) ◦ y(φ(x),w),

(7.3)

where ∂φ(x) ∈ Rn×n denotes the Jacobian of φ(x) and y(x,w) is given by Proposition 7.1.

Top-k in magnitude. As we emphasized, one advantage of our proposed generalization is
that we can express the top-k in magnitude operator. Indeed, with φ(x) = 1

2x
2, we can see from

(7.2) and (7.3) that we have for all x ∈ Rn

topkmag(x) = yφ(x,1k) = ∇1fφ(x,1k). (7.4)
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Obviously, for all x ∈ Rn
+, we also have topkmag(x) = topk(x). Top-k in magnitude is useful for

pruning weights with small magnitude in a neural network, as we demonstrate in our experiments
in §7.6.

Introducing regularization. We now explain how to make our generalized operator differen-
tiable. We introduce convex regularization R : Rn → R in the dual space:

f∗φ,R(y,w) := f∗φ(y,w) +R(y),

where f∗φ is the conjugate of fφ in the first argument. Going back to the primal space, we obtain
a new relaxed operator. A proof is given in Appendix 7.A.2.

Proposition 7.2. (Relaxed operator)

Let R : Rn → R be a convex regularizer. Then

fφ,R(x,w) := max
y∈Rn

⟨y,x⟩ − f∗φ(y,w)−R(y)

= min
u∈Rn

R∗(x− u) + fφ(u,w)

yφ,R(x,w) := y⋆ = ∇R∗(x− u⋆) = ∇1fφ,R(x,w).

The mapping φ also affects conjugacy. We have the following proposition.

Proposition 7.3. (Conjugate of fφ in the first argument)

If φ is convex and w ∈ Rn
+, then

f∗φ(y,w) = min
z∈P (w)

Dφ∗(y, z),

where Df (y, z) :=
∑n

i=1 zif(yi/zi).

A proof is given in Appendix 7.A.3. The function (yi, zi) 7→ ziφ
∗(yi/zi) is known as the perspective

of φ∗ and is jointly convex when zi > 0. The function Df (y, z) is known as the f -divergence
between y and z. Therefore, f∗φ(y,w) can be seen as the minimum “distance” between y and
P (w) in the φ∗-divergence sense.

Recovering the previous framework. If φ(x) = x, then

φ∗(yi/zi) =

{
0, if yi = zi

∞, otherwise
.

This implies that f∗φ(y,w) = f∗(y,w) = δP (w)(y), the indicator function of P (w), which is 0 if
y ∈ P (w) and ∞ otherwise. In this case, we therefore obtain

fφ,R(x,w) = max
y∈P (w)

⟨y,x⟩ −R(y),

which is exactly the relaxation of Blondel et al. (2020b).
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Differentiable and sparse top-k operators. To obtain a relaxed top-k operator with our
framework, we simply replace fφ with fφ,R and yφ with yφ,R in (7.4) to define

topkmagR(x) := yφ,R(x,1k) = ∇1fφ,R(x,1k).

A relaxed top-k mask can be defined in a similar way, but using φ(x) = x instead of φ(x) = 1
2x

2.
For the regularization R, we propose to use p-norms to the power p:

R(y) =
1

p
∥y∥pp :=

1

p

n∑

i=1

|yi|p.

The choice p = 2 used in previous works leads to sparse outputs but is not differentiable
everywhere. Any p between 1 (excluded) and 2 (excluded) leads to differentiable and sparse
outputs. We propose to use p = 4/3 to obtain a differentiable everywhere operator, and p = 2 to
obtain a differentiable a.e. operator, which is more convenient numerically. This is illustrated in
Figure 7.3.

Connection with k-support and OWL norms. When φ(x) = 1
2x

2 and w = 1k, we
obtain

f∗φ(y,w) =
1

2
min

z∈[0,1]n

n∑

i=1

y2i
zi

s.t. ⟨z,1⟩ = k,

which is known as the squared k-support norm Argyriou et al. (2012); McDonald et al. (2014);
Eriksson et al. (2015). Our formulation is a generalization of the squared k-support norm, as it
supports other choices of w and φ. For instance, we use it to define a new notion of k-support
negentropy in Appendix 7.B.1. When φ(x) = |x|, we recover the ordered weighted lasso (OWL)
norm (Zeng and Figueiredo, 2014) as

fφ(x,w) =
n∑

i=1

wi|x|[i].

With that choice of φ, it is easy to see from (7.3) that (7.4) becomes a signed top-k mask. Note
that, interestingly, k-support and OWL norms are not defined in the same space.

Figure 7.3: Example of our relaxed top-k operators. We take φ(x) = 1
2x

2 and k = 2.
For an input x = (x1, x2,

1
2 , 1), we plot yφ,R(x, 1k)1 + yφ,R(x, 1k)2 for R = 0 (left), R = λ

2∥x∥22
(center) and R = λ

p∥x∥
p
p with p = 4

3 (right). We take λ = 0.3. While no regularization leads to a
discontinuous mapping, the 2-norm regularization leads to continuity and a.e. differentiability,
and the 4

3 -norm regularization provides a continuously differentiable mapping. We emphasize
that, although in the left plot the graph looks connected, it is actually a discontinuous function.
Note that our relaxed operators are sparse as they are exactly 0 in the center.
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Biconjugate interpretation. Let us define the set of k-sparse vectors, which is nonconvex, as
Sk := {x ∈ Rn : ∥x∥0 ≤ k}, where ∥x∥0 is the number of non zero elements in x. We saw that if
φ(x) = 1

2x
2 then f∗φ(y,1k) is the squared k-support norm. It is known to be the biconjugate

(i.e., the tightest convex relaxation) of the squared L2 norm restricted to Sk (Eriksson et al.,
2015; Liu et al., 2022b). We now prove a more general result: f∗φ(y,1k) is the biconjugate of∑n

i=1 φ
∗(yi) restricted to Sk.

Proposition 7.4. (Biconjugate interpretation)

Let Φk(y) :=
∑n

i=1 φ
∗(yi) + δSk

(y). Suppose that φ is convex. Then the biconjugate of Φk is
given by

Φ∗∗
k (y) = f∗φ(y,1k)

See Appendix 7.A.4 for a proof.

7.5 Algorithms

In this section, we propose efficient algorithms for computing our operators. We first show that
the calculation of our relaxed operator reduces to isotonic optimization.

Reduction to isotonic optimization. We now show how to compute u⋆ in Proposition 7.2
by reduction to isotonic optimization, from which y⋆ can then be recovered by y⋆ = ∇R∗(x−u⋆).
We first recall the case φ(x) = x, which was already proved in existing works (Lim and Wright,
2016; Blondel et al., 2020b).

Proposition 7.5. (Reduction, φ(x) = x case)

Suppose that R(y) =
∑n

i=1 r(yi). Let σ be the permutation sorting x, s := xσ and

v⋆ = argmin
v1≥···≥vn

R∗(s− v) + f(v,w).

Then u⋆ from Proposition 7.2 is given by u⋆ = v⋆
σ−1 .

The set {v ∈ Rn : v1 ≥ · · · ≥ vn} is called the monotone cone. Next, we show that a similar
result is possible when φ(x) and r∗ are both even functions (sign-invariant) and increasing on
R+.

Proposition 7.6. (Reduction, φ(x) = φ(−x) case)

Suppose that R(y) =
∑n

i=1 r(yi) and φ(x) = (φ(x1), . . . , φ(xn)). Assume φ and r∗ are both even
functions (sign-invariant) and increasing on R+. Let σ be the permutation sorting |x|, s := |x|σ
and

v⋆ = argmin
v1≥···≥vn≥0

R∗(s− v) + fφ(v,w).

Then, u⋆ (Proposition 7.2) is equal to sign(x) ◦ v⋆
σ−1.

See Appendix 7.A.6 for a proof. Less general results are proved in (Zeng and Figueiredo, 2014;
Eriksson et al., 2015) for specific cases of φ and R. The set {v ∈ Rn : v1 ≥ · · · ≥ vn ≥ 0} is called
the non-negative monotone cone. In practice, the additional non-negativity constraint is easy to
handle: we can solve the isotonic optimization problem without it and truncate the solution if it
is not non-negative (Németh and Németh, 2012).
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Pool adjacent violator (PAV) algorithms. Under the conditions of Proposition 7.6, assum-
ing v and w are both sorted, we have from Proposition 7.1 that

f(v,w) =
n∑

i=1

wivi, fφ(v,w) =
n∑

i=1

wiφ(vi).

We then get that the problems in Proposition 7.5 and 7.6 are coordinate-wise separable:

v⋆ = argmin
v1≥···≥vn

n∑

i=1

hi(vi), (7.5)

for hi(vi) = r∗(si − vi) + wiφ(vi). Such problems can be solved in O(n) time using the pool
adjacent violator (PAV) algorithm (Best et al., 2000). This algorithm works by partitioning the
set [n] into disjoint sets (B1, · · ·Bm), starting from m = n and Bi = {i}, and by merging these
sets until the isotonic condition is met. A pseudo-code is available for completness in Appendix
7.B.2. At its core, PAV simply needs a routine to solve the “pooling” subproblem

γ⋆B = argmin
γ∈R

∑

i∈B
hi(γ) (7.6)

for any B ⊆ [n]. Once the optimal partition (B1, · · ·Bm) is identified, we have that

v⋆ = (γ⋆B1
, . . . , γ⋆B1︸ ︷︷ ︸
|B1|

, · · · , γ⋆Bm
, . . . , γ⋆Bm︸ ︷︷ ︸
|Bm|

) ∈ Rn.

Because Proposition 7.5 and 7.6 require to obtain the sorting permutation σ beforehand, the
total time complexity for our operators is O(n log n).

Example. Suppose φ(x) = 1
2x

2 and R = λ
2∥.∥22, where λ > 0. Since R∗ = 1

2λ∥.∥2, this gives
hi(vi) =

1
2(wiv

2
i +

1
λ(si − vi)2). The solution of the sub-problem is then

γ⋆B =

∑
i∈B si∑

i∈B(λwi + 1)
.

Using this formula, when λ is small enough, we can upper-bound the error between the hard and
relaxed operators: ∥topkmagR(x)− topkmag(x)∥∞ ≤ λ∥x∥∞. See Appendix 7.A.6 for details
and for the case p = 4

3 .

Dykstra’s alternating projection algorithm. The PAV algorithm returns an exact solution
of (7.5) in O(n) time. Unfortunately, it relies on element-wise dynamical array assignments,
which makes it potentially slow on GPUs and TPUs. We propose an alternative to obtain faster
computations. Our key insight is that by defining

C1 := {v ∈ Rn : v1 ≥ v2, v3 ≥ v4, . . . }
C2 := {v ∈ Rn : v2 ≥ v3, v4 ≥ v5, . . . },

one has {v ∈ Rn : v1 ≥ · · · ≥ vn} = C1 ∩ C2. We can therefore rewrite (7.5) as

v⋆ = argmin
v∈C1∩C2

n∑

i=1

hi(vi).

In the case R = 1
2∥.∥2 and φ(x) = x or 1

2x
2, this reduces to a projection onto C1 ∩C2, for which

we can use Dykstra’s celebrated projection algorithm Boyle and Dykstra (1986); Combettes
and Pesquet (2011). Jegelka et al. (2013) have used this method for computing the projection
onto the intersection of submodular polytopes, whereas we project onto a single polyhedral face.
When φ(x) = x, Dykstra’s projection algorithm takes the simple form in Algorithm 7.7.
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Algorithm 7.7. (Dykstra’s projection algorithm)

Starting from v0 = s, p0 = q0 = 0, Dykstra’s algorithm iterates

yk = argmin
y∈C1

1

2
∥vk + pk − y∥22 + ⟨y,w⟩

pk+1 = vk + pk − yk

vk+1 = argmin
v∈C2

1

2
∥yk + qk − v∥22 + ⟨v,w⟩

qk+1 = yk + qk − vk+1.

Each argmin calculation corresponds to a Euclidean projection onto C1 or C2, which can be
computed in closed form. Therefore, vk provably converges to v⋆. Each iteration of Dykstra’s
algorithm is learning-rate free, has linear time complexity and can be efficiently written as a
matrix-vector product using a mask, which makes it particularly appealing for GPUs and TPUs.
Interestingly, we find out that when w = 1k, then Dykstra’s algorithm converges surprisingly fast
to the exact solution. We validate that Dykstra leads to a faster runtime than PAV in Figure 7.4.
We use 100 iterations of Dykstra, and verify that we obtain the same output as PAV.

For the general non-Euclidean R∗ case, i.e., p ̸= 2, we can use block coordinate ascent in the
dual of (7.5). We can divide the dual variables into two blocks, corresponding to C1 and C2;
see Appendix 7.A.8. In fact, it is known that in the Euclidean case, Dykstra’s algorithm in the
primal and block coordinate ascent in the dual are equivalent (Tibshirani, 2017). Therefore,
although a vectorized implementation could be challenging for p ≠ 2, block coordinate ascent
can be seen as an elegant way to generalize Dykstra’s algorithm. Convergence is guaranteed as
long as each hi is strictly convex.

Differentiation. The Jacobian of the solution of the isotonic optimization problems can be
expressed in closed form for any p-norm regularization.

Proposition 7.8. (Differentiation)

Let v⋆ = (γ⋆B1
, . . . , γ⋆B1

· · · , γ⋆Bm
, . . . , γ⋆Bm

) be the optimal solution of the isotonic optimization
problem with R = 1

p∥.∥
p
p and p > 0. Then one has that v⋆ is differentiable with respect to

s = (s1, . . . , sn). Furthermore, for any r ∈ {1, . . . ,m} and i ∈ Br,

∂γ⋆Br

∂si
=





|γ⋆
Br

−si|q−2∑
j∈Br

|γ⋆
Br

−sj |q−2 if φ(x) = x

(q−1)|γ⋆
Br

−si|q−2∑
j∈Br

(q−1)|γ⋆
Br

−sj |q−2+wj
if φ(x) = 1

2x
2

where q is such that 1
p + 1

q = 1. When i /∈ Br, one simply has
∂γ⋆

Br
∂si

= 0.

One then has ∂v⋆j /∂si = ∂γ⋆Brj
/∂si where rj is such that v⋆j = γ⋆Brj

. See Appendix 7.A.7 for a
proof. Thanks to Proposition 7.8, we do not need to solve a linear system to compute the Jacobian
of the solution v⋆, in contrast to implicit differentiation of general optimization problems Blondel
et al. (2021). In practice, this also means that we do not need to perform backpropagation
through the unrolled iteratations of PAV or Dykstra’s projection algorithm to obtain the gradient
of a scalar loss function, in which our operator is incorporated. In particular, we do not need to
store the intermediate iterates of these algorithms in memory. Along with PAV and Dykstra’s

200



projection algorithm, we implement the corresponding Jacobian vector product routines in JAX,
using Proposition 7.8.
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Figure 7.4: Runtime comparison for comput-
ing our relaxed top-k on a TPU using PAV, Dyk-
stra, as a function of the dimension n. For each
n, we set k = ⌈n/10⌉. We also compare with the
hard top-k computation.

7.6 Experiments

We now demonstrate the applicability of our top-k operators through experiments. Our JAX
Bradbury et al. (2018) implementation is available at the following URL. See Appendix 7.C for
additional experimental details.
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Figure 7.5: Test error with respect to training time when training an MLP on MNIST. We
compare the baseline (grey) with the case where 90% of the weights are set to 0 by magnitude
pruning, using a differentiable a.e. (red), fully differentiable (green) or a hard top-k (blue).
Weight pruning in neural networks. We experimentally validate the advantage of using a
smoothed top-k for weight pruning in neural networks. We use a multilayer perceptron (MLP)
with 2 hidden layers and with ReLU activation. The width of the layers are respectively 784, 32,
32 followed by a linear classification head of width 10. More precisely, our model takes as input
an image a ∈ R784 and outputs

x =W3σ(W2σ(W1a+ b1) + b2) + b3 (logits),

where W1 ∈ R32×784, b1 ∈ R32, W2 ∈ R32×32, b2 ∈ R32, W1 ∈ R10×32, b3 ∈ R10 and σ is a ReLU.
In order to perform weight pruning we parametrize each Wi as Wi = topkmagR(W

′
i ) and learn

W ′
i instead of learning Wi directly. The output is then fed into a cross-entropy loss. We compare

the performance of the model when applying a hard vs differentiable top-k operator to keep only
10% of the coefficients. For the differentiable top-k, we use a regularization R(y) = λ

p∥y∥p with
p ∈ {43 , 2} and λ = 10−4. We find out that the model trained with the differentiable top-k trains
significantly faster than the one trained with the hard top-k. We also verify that our relaxed
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Figure 7.6: Validation top-k accuracy when fine-tuning a ViT-B/16 on CIFAR 100 using
either the cross-entropy loss or our smooth top-3 loss for training. We have the following running
times obtained with a TPUv3-8. Baseline: 9.5 sec/step, p = 2: 9.7 sec/step and p = 4/3: 10
sec/step.

top-k maintains the 10% rate of non-zero weights. Results on MNIST are displayed in Figure
7.5. We also compare with an entropy-regularized approximation of the top-k operator using the
framework proposed in Cuturi et al. (2019) and adapted in Petersen et al. (2022). To guarantee
the sparsity of the weights, we use the "straight-through" trick: the hard top-k is run on the
forward pass but we use the gradient of the relaxed top-k in the backward pass. This method
leads to a test error of 5.9%, which is comparable to the results obtained with our differentiable
operators.

Smooth top-k loss. To train a neural network on a classification task, one typically minimizes
the cross-entropy loss, whereas the performance of the network is evaluated using a top-k test
accuracy. There is therefore a mismatch between the loss used at train time and the metric
used at evaluation time. Cuturi et al. (2019) proposed to replace the cross-entropy loss with
a differentiable top-k loss. In the same spirit, we propose to finetune a ViT-B/16 Dosovitskiy
et al. (2020) pretrained on the ImageNet21k dataset on CIFAR 100 Krizhevsky et al. (2009)
using a smooth and sparse top-k loss instead of the cross-entropy loss. We use a Fenchel-Young
loss Blondel et al. (2020a). It takes as input the vector a and parameters θ of a neural network
gθ:

x = gθ(a) (logits)
ℓ(x, t) = fφ,R(x,1k)− ⟨x, t⟩,

where fφ,R(x,1k) is given by Proposition 7.2 and t is a one-hot encoding of the class of a. We
set φ(x) = x as we want a top-k mask. We consider p norm regularizations for R, where p = 2 or
p = 4/3. We take k = 3. We use the exact same training procedure as described in Dosovitskiy
et al. (2020) and use the corresponding pretrained ViT model B/16, and train our model for 100
steps. Results are reported in Figure 7.6. We find that the ViT finetuned with the smooth top-3
loss outperforms the one finetuned with the cross-entropy loss in terms of top-k error, for various
k.

Sparse MoEs. Finally, we demonstrate the applicability of our proposed smooth top-k operators
on a large-scale classification task using vision sparse mixture of experts (V-MoE) Riquelme
et al. (2021). Vision transformers (ViTs) are made of a succession of self-attention layers and
MLP layers. The idea of V-MoEs is to replace MLPs in ViTs by a sparsely-gated mixture of
MLPs called experts. This way, only some of the experts are activated by a given patch token.
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At the heart of the token-expert assignment lies a routing mechanism which performs a top-k
operation on gate values. We focus on the MoE with expert choice routing framework Zhou
et al. (2022), where each expert is assigned to k tokens. We train a S/32 variant of the V-MoE
model, with 32× 32 patches on the JFT-300M dataset Sun et al. (2017), a dataset with more
than 305 million images. Our model has 32 experts, each assigned to k = 28 tokens selected
among n = 400 at each MoE layer. We compare the validation accuracy when using the baseline
(hard top-k) with our relaxed operator. We use p = 2 and Dykstra’s projection algorithm, as we
found it was the fastest method on TPU. We used the training procedure proposed by Zhou et al.
(2022) to obtain a fair comparison with the baseline. Due to the large size of the JFT-300M
dataset (305 million images), we performed one run, as in Liu et al. (2022b). We find that our
approach improves validation performance. Results are displayed in Figure 7.7.
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Figure 7.7: Precision-at-1 on the JFT-300M dataset
when using a hard top-k (baseline, in blue) or a dif-
ferentiable a.e. one (in red) in a sparse MoE with
a ViT-S/32. We zoom in on the last training steps,
where our proposed method outperforms the baseline.
The runtime is 10 hours for the baseline and 15 for
the differentiable a.e. top-k (gradient calculation is
the bottleneck here).

7.7 Discussion

Advantage of the non-linearity. As an alternative to performing a relaxed top-k operator in
magnitude of x, one can perform a differentiable top-k mask on |x|, and then multiply the output
by x. This alternative would also lead to a differentiable top-k operator in magnitude. However,
our operator has more principled behavior at the limit cases. For instance, as λ→∞, it is easy
to see that the relaxed top-k mask converges to the vector (k/n)× 1n. Therefore, a rescaling by
n/k is needed to obtain the identity as λ→∞, in contrast to our top-k in magnitude. From a
theoretical point of view, the introduction of a non-linearity allows us to draw connections with
the k-support norm. It also has a bi-conjugate interpretation, which we believe has an interest
by itself.

Sensitivity to the choice of p. The subproblem needed within PAV enjoys a closed form
only for specific choices of p. This is why we focused on p = 2 and p = 4

3 in our experiments.
However, we stress out that the proposed methods work for any choice of p. As an example, we
provide the same illustration as for Figure 7.1 in Figure 7.8.

203



0 1 2 3 4 5
s

0.00

0.25

0.50

0.75

1.00

to
p
km

as
k(

µ(
s)

) 2
+

to
p
km

as
k(

µ(
s)

) 3

Hard

DiÆerentiable

Smooth

0 1 2 3 4 5
s

0.00

0.25

0.50

0.75

1.00

to
p
km

as
k(

µ(
s)

) 2
+

to
p
km

as
k(

µ(
s)

) 3

Hard

DiÆerentiable

Smooth

Figure 7.8: Illustration of our differentiable and sparse top-k mask. Same setup as for
Figure 7.1, with more values for p.

7.8 Conclusion

In this work, we proposed a generalized framework to obtain fast, differentiable (or differentiable
a.e.) and sparse top-k and top-k masks operators, including operators that select values in
magnitude. Thanks to a reduction to isotonic optimization, we showed that these operators can
be computed using either the Pool Adjacent Violators (PAV) algorithm or Dykstra’s projection
algorithm, the latter being faster on TPU hardware. We successfully demonstrated the usefulness
of our operators for weight pruning, top-k losses and as routers in vision sparse mixture of
experts.

7.A Proofs

7.A.1 Linear Maximization Oracle - Proof of Proposition 7.1

Assuming w is sorted in descending order, we have for any x ∈ Rn

n∑

i=1

wix[i] = max
σ∈Σ
⟨xσ,w⟩

= max
π∈Σ
⟨x,wπ⟩

= max
y∈P (w)

⟨x,y⟩.

In the first line, we used that the inner product is maximized by finding the permutation σ sorting
x in descending order. In the second line, we used that ⟨xσ,w⟩ = ⟨x,wπ⟩, if π is the inverse
permutation of σ. In the third line, we used the fundamental theorem of linear programming,
which guarantees that the solution happens at one of the vertices of the polytope. To summarize,
if σ is the permutation sorting x in descending order, then y⋆ = wσ−1 .

7.A.2 Relaxed operator - Proof of Proposition 7.2

Recall that f∗φ,R(y,w) := f∗φ(y,w) +R(y). We then have

fφ,R(x,w) = max
y∈Rn

⟨y,x⟩ − f∗φ(y,w)−R(y).
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It is well-known that if h1 and h2 are two convex functions, then (h1+h2)
∗ is equal to the infimal

convolution of h∗1 with h∗2 (Beck, 2017, Theorem 4.17):

(h1 + h2)
∗(x) = (h∗1□h∗2)(x) := min

u∈Rn
h∗1(u) + h∗2(x− u).

With h1 = f∗φ and h2 = R, we therefore get

fφ,R(x,w) = min
u∈Rn

R∗(x− u) + fφ(u,w).

Finally, the expression of y⋆ follows from Danskin’s theorem applied.

7.A.3 Conjugate - Proof of Proposition 7.3

We have
f∗φ(y,w) = max

x∈Rn
⟨x,y⟩ − fφ(x,w)

= max
x∈Rn

⟨x,y⟩ − max
y′∈P (w)

⟨φ(x),y′⟩

= max
x∈Rn

min
y′∈P (w)

⟨x,y⟩ − ⟨φ(x),y′⟩.

If w ∈ Rn
+, then y′ ∈ Rn

+ for all y′ ∈ P (w). Then the function (x,y′) 7→ ⟨x,y⟩ − ⟨φ(x),y′⟩ is
concave-convex and we can switch the min and the max to obtain

f∗φ(y,w) = min
y′∈P (w)

max
x∈Rn

⟨x,y⟩ − ⟨φ(x),y′⟩

= min
y′∈P (w)

n∑

i=1

y′iφ
∗
i (yi/y

′
i).

7.A.4 Biconjugate interpretation - Proof of Proposition 7.4

One has

Φ∗
k(x) = max

y∈Sk

⟨x,y⟩ −
n∑

i=1

φ∗(yi).

As in (Kyrillidis et al., 2013), let Σk be the set of subsets of [n] with cardinality smaller than k.
Then

Φ∗
k(x) = max

I⊂Σk

max
y∈Rn

∑

i∈I
xiyi − φ∗(yi).

This gives

Φ∗
k(x) = max

I⊂Σk

∑

i∈I
φ(xi) =

k∑

i=1

φ(x)[i].

Taking the conjugate gives the desired result.

7.A.5 Reduction to isotonic optimization

We focus on the case when φ is sign-invariant, i.e., φ(x) = φ(−x), since the case φ(x) = x is
already tackled in (Lim and Wright, 2016; Blondel et al., 2020b).

We first show that u⋆ preserves the sign of x. We do so by showing that for any u ∈ Rn,
u′ := sign(x) ◦ |u| achieves smaller objective value than u. Recall that

fφ,R(x,w) = min
u∈Rn

R∗(x− u) + fφ(u,w) = min
u∈Rn

R∗(x− u) + f(φ(u),w).
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Clearly, we have f(φ(u′),w) = f(φ(u),w). Moreover, if R(y) =
∑n

i=1 r(yi), then R∗(x− u) =∑n
i=1 r

∗(xi − ui). If r∗ is sign-invariant and increasing on R+, we then have

r∗(xi − u′i) = r∗(sign(xi)(|xi| − |ui|))
= r∗(|xi| − |ui|)
≤ r∗(xi − ui),

where we used the reverse triangle inequality ||xi − |ui|| ≤ |xi − ui|. We conclude that u⋆ has
the same sign as x. From now on, we can therefore assume that x ∈ Rn

+, which implies that
u ∈ Rn

+.

Since u ∈ Rn
+ and φ is increasing on R+, we have uσ1 ≥ · · · ≥ uσn ⇒ φ(uσ1) ≥ · · · ≥ φ(uσn). We

know that for all u ∈ Rn and w ∈ Rn, we have f(φ(u),w) = ⟨φ(u)σ,w⟩ = ⟨φ(uσ),w⟩, where σ
is the permutation sorting u in descending order. From now on, let us fix σ to the permutation
sorting u⋆. We will show in the sequel that this is the same permutation as the one sorting x.
We then have

fφ,R(x,w) = min
u∈Rn

R∗(x− u) + ⟨φ(uσ),w⟩.

Using the change of variable v = uσ ⇔ vσ−1 = u, we obtain

fφ,R(x,w) = max
v1≥···≥vn

R∗(xσ − v) + ⟨φ(v),w⟩

where we used that if R(y) =
∑n

i=1 r(yi), then

R∗(x− u) = R∗(x− vσ−1) = R∗(xσ − v).

Let s := xσ. It remains to show that s1 ≥ · · · ≥ sn, i.e., that s and v⋆ are both in descending
order. Suppose sj > si for some i < j. Let s′ be a copy of s with si and sj swapped. Since R∗ is
convex, by (Blondel et al., 2020b, Lemma 4),

R∗(s− v⋆)−R∗(s′ − v⋆) = r∗(si − v⋆i ) + r∗(sj − v⋆j )− r∗(sj − v⋆i )− r∗(si − v⋆j ) ≥ 0,

which contradicts the assumption that v⋆ and the corresponding σ are optimal.

7.A.6 Subproblem derivation

Case φ(x) = 1
2x

2 and R(x) = λ
2∥x∥2. One has hi(γ) = 1

2(wiγ
2 + 1

λ(si − γ)2) so that
dhi
dγ = (wi +

1
λ)γ − 1

λsi. Therefore,

d
∑

i∈B hi(γ)

dγ
= γ

∑

i∈B
(wi +

1

λ
)− 1

λ

∑

i∈B
si.

Since in addition
∑

i∈B hi is convex we obtain that its minimum is given by canceling the
derivative, hence

γ⋆B =

∑
i∈B si∑

i∈B(λwi + 1)
.

Remark. This result shows that when λ is small enough, one can control the approximation
error induced by our proposed operator in comparison to the hard operator. For simplicity, let us
focus on the case where there are no ties: ∀i ̸= j, xi ̸= xj . This implies that s1 > s2 > · · · > sn.
In this case, for λ small enough, we get

γ⋆{1} > γ⋆{2} > · · · > γ⋆{n}
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so that the optimal partition in PAV’s algorithm is given by taking Bi = {i}. Therefore,
v⋆i = si

λwi+1 . One then has

u⋆ = sign(x) ◦ v⋆
σ−1 =

x

λwσ−1 + 1
.

Plugging it into y⋆ given by Proposition 7.2 gives

y⋆ =
wσ−1 ◦ x
λwσ−1 + 1

.

Since the hard operator is given by wσ−1 ◦ x, the approximation error eλ(x,w) in infinite norm
is then simply bounded by

eλ(x,w) := ∥wσ−1 ◦ x( 1

λwσ−1 + 1
− 1)∥∞ ≤ ∥w∥∞∥x∥∞∥

λw

λw + 1
∥∞.

In the topkmag case, w = 1k, so that eλ(x,w) ≤ λ∥x∥∞.

Case φ(x) = x and R(x) = λ
p∥x∥p with p = 4

3 . One has hi(γ) = wiγ +
1

4λ3 (si − γ)4 so that
dhi
dγ = wi +

1
λ3 (γ − si)3. Therefore,

d
∑

i∈B hi(γ)

dγ
=

1

λ3

∑

i∈B
(γ − si)3 +

∑

i∈B
wi.

Since in addition
∑

i∈B hi is convex we obtain that its minimum is given by canceling the
derivative, and hence by solving the third-order polynomial equation

1

λ3

∑

i∈B
(γ − si)3 +

∑

i∈B
wi = 0.

In practice, we solve this equation using the root solver from the numpy library. Note that taking
p = 4

3 leads to an easier subproblem than p = 3
2 , hence our choice for p.

Case φ(x) = 1
2x

2 and R(x) = λ
p∥x∥p with p = 4

3 . The derivation is very similar to the
previous case. Indeed, one has hi(γ) = 1

2wiγ
2 + 1

4λ3 (si − γ)4 so that dhi
dγ = wiγ + 1

λ3 (γ − si)3.
Therefore,

d
∑

i∈B hi(γ)

dγ
=

1

λ3

∑

i∈B
(γ − si)3 + γ

∑

i∈B
wi.

7.A.7 Differentiation - Proof of Proposition 7.8

Case φ(x) = x. One has hi(γ) = 1
q |si − γ|q + wivi. For any optimal B in PAV one has the

optimality condition ∑

i∈B
(sign(γ⋆B − si)|γ⋆B − si|q−1 + wi) = 0.

Using the implicit function theorem gives that γ⋆B is differentiable, and differentiating with
respect to any si for i ∈ B leads to

∂γ⋆B
∂si

=
|γ⋆B − si|q−2

∑
j∈B |γ⋆B − sj |q−2

.
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Case φ(x) = 1
2x

2. Similar calculations lead to

∂γ⋆B
∂si

=
(q − 1)|γ⋆B − si|q−2

∑
j∈B(q − 1)|γ⋆B − sj |q−2 + wj

.

7.A.8 Dual of isotonic optimization

min
v1≥···≥vn

n∑

i=1

hi(vi) = min
v∈Rn

max
α∈Rn−1

+

n∑

i=1

hi(vi)− αi(vi − vi+1)

= min
v∈Rn

max
α∈Rn−1

+

n∑

i=1

hi(vi)− vi(αi − αi−1)

= max
α∈Rn−1

+

−
[

n∑

i=1

h∗i (αi − αi−1)

]

where α0 := 0 and αn := 0 are constants (i.e., not optimized). An optimal solution v⋆ is recovered
from α⋆ by v⋆i = (h∗i )

′(α⋆
i − α⋆

i−1). Since α is only constrained to be non-negative, we can solve
the dual by coordinate ascent. The subproblem associated with αi, for i ∈ {1, . . . , n−1}, is

max
αi∈R+

−h∗i (αi − αi−1)− h∗i+1(αi+1 − αi).

The subproblem is a simple univariate problem with non-negative constraint. Let us define α′
i as

the solution of (h∗i )
′(α′

i − αi−1)− (h∗i+1)
′(αi+1 − α′

i) = 0. The solution is then α⋆
i = [α′

i]+.

In practice, we can alternate between updating α1, α3, . . . in parallel and α2, α4, . . . in parallel.
The dual variables with odd coordinates correspond to the set C1 = {v ∈ Rn : v1 ≥ v2, v3 ≥
v4, . . . } and the dual variables with even coordinates correspond to the set C2 = {v ∈ Rn : v2 ≥
v3, v4 ≥ v5, . . . }. Coordinate ascent converges to an optimal dual solution, assuming each h∗i is
differentiable, which is equivalent to each hi being strictly convex.

Note that the subproblem can be rewritten in primal space as

max
αi∈R+

−h∗i (αi − αi−1)− h∗i+1(αi+1 − αi)

= max
αi∈R+

−
[
max
vi

(αi − αi−1)vi − hi(vi)
]
−
[
max
vi+1

(αi+1 − αi)vi+1 − hi+1(vi+1)

]

= min
vi,vi+1

αi−1vi + hi(vi)− αi+1vi+1 + hi+1(vi+1) + max
αi∈R+

αi(vi+1 − vi)

= min
vi≥vi+1

hi(vi) + hi+1(vi+1) + αi−1vi − αi+1vi+1.

In fact, in the Euclidean case, it is known that Dykstra’s algorithm in the primal and block
coordinate ascent in the dual are equivalent (Tibshirani, 2017). Therefore, block coordinate
ascent can be seen as an elegant way to generalize Dykstra’s algorithm to the non-Euclidean
case.

7.B Additional material

7.B.1 k-support negentropies

When φ(x) = ex−1 and w = 1k, we obtain

f∗φ(y,w) = min
z∈[0,1]n

n∑

i=1

yi log(
yi
zi
) s.t. ⟨z,1⟩ = k.
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We call it a k-support negative entropy.

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Figure 7.9: Contours of the k-support entropy on the simplex for n = 3 and k = 2. Lighter
colors indicate lower values.

7.B.2 PAV algorithm

We present the pseudo code for PAV, adapted from Lim and Wright (2016). Recall that we
define

γ⋆B = argmin
γ∈R

∑

i∈B
hi(γ).

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Figure 9. Contours of the k-support entropy on the simplex for n = 3 and k = 2. Lighter colors indicate lower values.

B.2. PAV algorithm

We present the pseudo code for PAV, adapted from Lim & Wright (2016). Recall that we define

�?B = argmin
�2R

X

i2B

hi(�).

Algorithm 1 Pool Adjacent Violators (PAV)
Input: Convex functions {hi : R! R}i2[n]

Initalize partitions P  {{i}|i 2 [n]}
Initialize vi  �?{i} for all i 2 [n]
while there exists i such that vi < vi+1 do

Find Bri
and Bri+1

in P such that i 2 Bri
and i + 1 2 Bri+1

Remove Bri
and Bri+1

from P
Add Bri [Bri+1 to P
Compute �?Bri

[Bri+1
by solving (6)

Assign vr  �?Bri
[Bri+1

for all r 2 Bri
[Bri+1

end while
return v

C. Experimental details
C.1. Weight pruning in neural networks

For our experiment on the MNIST dataset, we train the MLP using SGD with a batch size of 128 and a constant learning
rate of 10�2. We trained the model for 30 epochs. In terms of hardware, we use a single GPU.

C.2. Smooth top-k loss

For our experiment on the CIFAR-100 dataset, we train the ViT-B/16 using SGD with a momentum of 0.9 and with a batch
size of 512.

For the cross-entropy loss, we follow the training procedure of Dosovitskiy et al. (2020): warmup phase until the learning
rate reaches 3⇥ 10�3. The model is trained for 100 steps using a cosine learning rate scheduler. This choice of learning rate
gave the best performance for this number of training steps.

For our top-3 losses: warmup phase until the learning rate reaches 5⇥ 10�3. The model is trained for 100 steps using a
cosine learning rate scheduler.

In terms of hardware, we use 8 TPUs.
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For our experiment on the MNIST dataset, we train the MLP using SGD with a batch size of 128
and a constant learning rate of 10−2. We trained the model for 30 epochs. In terms of hardware,
we use a single GPU.

7.C.2 Smooth top-k loss

For our experiment on the CIFAR-100 dataset, we train the ViT-B/16 using SGD with a
momentum of 0.9 and with a batch size of 512.

For the cross-entropy loss, we follow the training procedure of Dosovitskiy et al. (2020): warmup
phase until the learning rate reaches 3× 10−3. The model is trained for 100 steps using a cosine
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learning rate scheduler. This choice of learning rate gave the best performance for this number
of training steps.

For our top-3 losses: warmup phase until the learning rate reaches 5×10−3. The model is trained
for 100 steps using a cosine learning rate scheduler.

In terms of hardware, we use 8 TPUs.

7.C.3 Sparse MoEs

We train the V-MoE S/32 model (Riquelme et al., 2021) on the JFT-300M dataset (Sun et al.,
2017). JFT is a multilabel dataset, and thus accuracy is not an appropriate metric since each
image may have multiple labels. Therefore, we measure the quality of the models using the
commonly-used precision-at-1 metric (Järvelin and Kekäläinen, 2017). The training procedure
is analogous to the one described in Riquelme et al. (2021), except that we replace the routing
algorithm. In particular, we use the Expert Choice Routing algorithm described in Zhou et al.
(2022) as our baseline, and replace the non-differentiable top-k operation used there with our
differentiable approach (we perform 10 iterations of Dykstra’s algorithm).

We use exactly the same hyperparameters as described in Riquelme et al. (2021), except for the
fact that Expert Choice Routing does not require any auxiliary loss. Specifically, we train for 7
epochs using a batch size of 4 096. We use the Adam optimizer (β1 = 0.9, β2 = 0.999), with a
peak learning rate of 10−3, warmed up for 10 000 steps and followed by linear decay. We use
mild data augmentations (random cropping and horizontal flipping) and weight decay of 10−1 in
all parameters as means of regularization. We trained both models on TPUv2-128 devices.
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8
Conclusion

As time goes on, deep learning models become deeper, and datasets grow larger. In this PhD
thesis, we demonstrated how this scaling facilitates the development of mathematical tools
to better understand deep architectures: deep residual networks can be interpreted as neural
differential equations, and Transformers as maps and flows in the space of probability measures.
In addition to providing a framework for studying deep architectures, neural differential equations
can be trained without the memory consumption required for storing activations, unlike standard
deep networks. We first briefly recap the key contributions of the manuscript before presenting
future research directions.

In Part I, we provided a mathematical framework to better understand the regime in which
the infinite-depth limit of trainable residual networks corresponds to an ordinary differential
equation (ODE). Specifically, it is sufficient for the neural network to discretize a neural ODE at
initialization. We also presented a discrete adjoint method, which allows deep residual networks
to be trained without memory consumption due to storing the activations in the residual layers
when they are deep enough.

In Part II, we proposed using the analogy between residual-based architectures and differential
equations to design and analyze new deep learning models. First, we presented Momentum
ResNets, which rely on a second-order formulation of any residual network’s forward rule. These
can be trained with a significantly smaller memory footprint and benefit from a second-order
ODE formulation. Second, we introduced Sinkformers, Transformers in which the row-wise
stochastic attention matrix is replaced by a doubly stochastic attention matrix. We showed that
both Transformers and Sinkformers can be interpreted as flow maps in the space of probability
measures, the second corresponding to a Wasserstein gradient flow.

Finally, in Part III, we focused exclusively on Transformers. The prohibitive computational cost of
scaling parameter counts in Transformers can be mitigated by routing tokens to smaller networks
using Sparse Mixture of Experts with top-k gating. We proposed a sparse and differentiable
variant of the top-k operator based on convex analysis and demonstrated accuracy improvements
at scale. Additionally, we presented results demonstrating the capability of linear Transformers to
perform autoregressive in-context learning, illustrating how a Transformer adapts its computation
based on the context to estimate an internal parameter before predicting the next token.
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Future Directions

Infinite Depth Limit under Realistic Assumptions. As emphasized in Chapter 3, the
correspondence between deep residual networks and ordinary differential equations holds under
the strong assumption that the network’s weights are initialized as a discretization of a smooth
function. This contrasts with standard random initialization, which typically leads to significantly
better performance. While it is known that such random initializations result in the infinite
depth limit of the network becoming a stochastic differential equation (SDE) before training
(Marion et al., 2022), the behavior of the networks during training remains unclear. We believe
that an analysis similar to that presented in Chapters 2 and 3 could provide a more realistic
interpretation of deep residual networks, shedding light on their implicit bias when initialized
differently from the case studied in this manuscript. In the context of Transformers, such SDEs
would take the form of a McKean–Vlasov process, rather than the PDE proposed in Chapter
5.

Avoiding Memory-Computation Trade-offs. The adjoint method in neural ODEs trades-off
memory usage with computational cost, and the same applies to the discrete adjoint method
we proposed in Chapter 2, as well as for Momentum ResNets introduced in Chapter 4. In-
stead of recomputing activations during backpropagation, a potential solution could be the
use of approximate activations, which would be significantly less computationally expensive to
compute.

Towards More Efficient Attention. The space and time complexities of computing the
attention matrix scale quadratically with respect to sequence length. Sinkformers, introduced in
Chapter 5, impose a democratic principle on the attention matrix but do not promote sparsity
or faster computations. However, they highlight the potential benefits of exploring alternative
attention mechanisms. While Sinkhorn algorithm solves an entropic regularized optimal transport
problem, sparsity could be enforced by considering squared 2-norm regularization (Blondel et al.,
2018; Liu et al., 2022b).

Token Routing in Mixture of Experts. Our experimental findings in Chapter 7 demonstrate
the advantages of new routing strategies in Sparse Mixture of Experts Transformers. While the
use of processing unit-aware Dykstra’s projection algorithm enables the scalability of our sparse
and differentiable top-k operator, there is still room for improvement in the running time of our
method, which we leave for future work.

Autoregressive In-Context Learning with Kernel Flows. The theoretical analysis in
Chapter 6 assumes linear attention models and the commutativity of context matrices. Recent
works have established connections between attention mechanisms and kernel methods (Tsai et al.,
2019; Mialon et al., 2021b; Mialon, 2023; Cheng et al., 2023). In particular, Cheng et al. (2023)
demonstrate that there exists a simple parameter configuration for non-linear Transformers such
that they implement gradient descent in function space with respect to a Reproducing Kernel
Hilbert Space (RKHS) metric. Developing a kernel-based approach for autoregressive in-context
learning to account for more general mappings in the autoregressive sequence generation process
would be highly valuable. This would necessitate adapting kernel ridge regression to a causal
setting.
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